Diallel Cross Application and Histomolecular Characterization: An Attempt to Develop Reference Stock of Labeo ariza
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Collection and Rearing of Wild L. ariza
2.3. Selection of L. ariza for Grow-Out Culture
2.4. Determination of the Gonadosomatic Index (GSI)
2.5. Diallel Crossing among Individuals of the Three River Populations
2.6. Growing out Crossbred Groups of L. ariza and Determination of Heterosis
2.7. Muscle Histology of Different L. ariza Groups
2.8. Genetic Characterization of Different L. ariza Groups
2.9. Statistical Analysis
3. Results
3.1. Growth Performance of Parental Stock of L. ariza during the Domestication Period
3.2. The GSI of L. ariza during the Domestication Period
3.3. Reproductive Performance of L. ariza during the Diallel Crossing of the Three Populations
3.4. Growth Performance and Heterosis of Crossbreds L. ariza
3.5. Muscle Morphometry of Different Crossbreeds of L. ariza
3.6. Genetic Characterization of Different Crossbreds of L. ariza
4. Discussion
4.1. Growth Response and GSI Performance of Parental Stocks
4.2. Heterosis in the Reproductive and Growth Performances of Crossbred Groups
4.3. Myofiber Characteristics of L. ariza
4.4. Microsatellite Variation in Parental and Crossbreed Groups of L. ariza
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asaduzzaman, M.; Ahammad, A.K.S.; Haque, M.M.; Rahman, M.A. Morpho-Genetic Analysis of Three River Populations of Bhagna, Labeo ariza (Hamilton 1807) in Bangladesh. J. Aquac. Mar. Biol. 2015, 2, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Kottelat, M. The Fishes of the Inland Waters of Southeast Asia: A Catalogue and Core Bibliography of the Fishes Known to Occur in Freshwaters, Mangroves and Estuaries. Supplement No. 27. Raffles Bull. Zool. 2013, 27, 1–663. [Google Scholar]
- Felts, R.A.; Fajts, F.; Akteruzzaman, M. Small Indigenous Fish Species Culture in Bangladesh (Technical Brief), IFADEP Sub Project 2, Development of Inland Fisheries; IFADEP: Annecy, France, 1996. [Google Scholar]
- Rahman, A.K.A. Freshwater Fishes of Bangladesh, 2nd ed.; Zoological Society of Bangladesh, Department of Zoology, University of Dhaka: Dhaka, Bangladesh, 2005. [Google Scholar]
- Rahman, M.A.; Zaher, M.; Azimuddin, K.M. Development of Fingerling Production Techniques in Nursery Ponds for the Critically Endangered Reba Carp, Cirrhinus ariza (Hamilton, 1807). Turkish J. Fish. Aquat. Sci. 2009, 9, 165–172. [Google Scholar] [CrossRef]
- IUCN. Red List of Bangladesh: Volume 5: Freshwater Fishes; International Union for Conservation of Nature (IUCN), Bangladesh Country Office: Dhaka, Bangladesh, 2015; ISBN 9789843407382. [Google Scholar]
- Mariappan, P.; Antony, C.; Subramaniam, B.; Nagarahalli, M.; Bhosale, M.M. Successful Breeding of the Endemic Cyprinid Fish Dawkinsia Rohani in Controlled Condition—First Report. Aquac. Res. 2021, 52, 4693–4700. [Google Scholar] [CrossRef]
- Das, P.; Behera, B.K.; Meena, D.K.; Singh, S.K.; Mandal, S.C.; Das, S.S.; Yadav, A.K.; Bhattacharjya, B.K. Comparative Efficacy of Different Inducing Agents on Breeding Performance of a near Threatened Cyprinid Osteobrama Belangeri in Captivity. Aquac. Reports 2016, 4, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Borah, B.C. Advancing Sexual Maturation and Induced Breeding of a Minor Carp, Labeo gonius (Hamilton, 1822) (Teleostei: Cyprinidae) by Impact of Artificially Enhanced Temperature and Photoperiod in Assam. J. Exp. Zool. India 2020, 23, 1763–1770. [Google Scholar]
- Ahammad, A.K.S.; Gani, A.; Ahmed, M.B.U.; Khan, M.G.Q.; Hossain, M.Y.; Haque, M.M.; Ceylan, H. Characterization of Best Growing Line of the Minnow, Gymnostomus ariza (Hamilton 1807) through Landmark-Based Morphometric Analysis. Egypt. J. Aquat. Biol. Fish. 2021, 25, 479–498. [Google Scholar] [CrossRef]
- Hussain, M.G.; Mazid, M.A. Carp Genetic Resources. In Carp Genetic Resources for Aquaculture in Asia; Penman, D.J., Gupta, M.V., Dey, M.M., Eds.; WorldFish Center Technical Report 65; WorldFish Center: Penang, Malaysia, 2005; pp. 16–81. ISBN 983-2346-35-5. [Google Scholar]
- Penman, D.J. Progress in Carp Genetics Research. In Carp Genetic Resources for Aquaculture in Asia; Penman, D.J., Gupta, M.V., Dey, M.M., Eds.; WorldFish Center Technical Report 65; WorldFish Center: Penang, Malaysia, 2005; pp. 82–113. ISBN 83-2346-35-5. [Google Scholar]
- Kucharczyk, D.; Nowosad, J.; Wyszomirska, E.; Cejko, B.I.; Arciuch-Rutkowska, M.; Juchno, D.; Boroń, A. Comparison of Artificial Spawning Effectiveness of HCG, CPH and GnRHa in Combination with Dopamine Inhibitors in a Wild Strain of Ide Leuciscus Idus (L.) in Hatchery Conditions. Anim. Reprod. Sci. 2020, 221, 106543. [Google Scholar] [CrossRef]
- Nowosad, J.; Kupren, K.; Biegaj, M.; Kucharczyk, D. Allometric and Ontogenetic Larval Development of Common Barbel during Rearing under Optimal Conditions. Animal 2021, 15, 100107. [Google Scholar] [CrossRef]
- Regan, T.; Bean, T.P.; Ellis, T.; Davie, A.; Carboni, S.; Migaud, H.; Houston, R.D. Genetic Improvement Technologies to Support the Sustainable Growth of UK Aquaculture. Rev. Aquac. 2021, 13, 1958–1985. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, C.; Lu, X.; Wang, L.; Hao, Z.; Li, M.; Zhang, D.; Yong, H.; Zhu, H.; Weng, J.; et al. Dissecting the Genetic Basis Underlying Combining Ability of Plant Height Related Traits in Maize. Front. Plant Sci. 2018, 9, 1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffing, B. A Generalised Treatment of the Use of Diallel Crosses in Quantitative Inheritance. Heredity 1956, 10, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Sun, C.; Dong, J.; Tian, Y.; Ye, X. Comparison of the Crossbreeding Effects of Three Mandarin Fish Populations and Analyses of the Microsatellite Loci Associated with the Growth Traits of F1 Progenies. Int. J. Aquac. Fish. Sci. 2017, 3, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Crusio, W.E.; Kerbusch, J.M.L.; van Abeelen, J.H.F. The Replicated Diallel Cross: A Generalized Method of Analysis. Behav. Genet. 1984, 14, 81–104. [Google Scholar] [CrossRef]
- Gjerde, B.; Reddy, P.V.G.K.; Mahapatra, K.D.; Saha, J.N.; Jana, R.K.; Meher, P.K.; Sahoo, M.; Lenka, S.; Govindassamy, P.; Rye, M. Growth and Survival in Two Complete Diallele Crosses with Five Stocks of Rohu Carp (Labeo rohita). Aquaculture 2002, 209, 103–115. [Google Scholar] [CrossRef]
- Bentsen, H.B.; Gjerde, B.; Eknath, A.E.; de Vera, M.S.P.; Velasco, R.R.; Danting, J.C.; Dionisio, E.E.; Longalong, F.M.; Reyes, R.A.; Abella, T.A.; et al. Genetic Improvement of Farmed Tilapias: Response to Five Generations of Selection for Increased Body Weight at Harvest in Oreochromis niloticus and the Further Impact of the Project. Aquaculture 2017, 468, 206–217. [Google Scholar] [CrossRef]
- Haque, M.M.; Hasan, N.A.; Eltholth, M.M.; Saha, P.; Mely, S.S.; Rahman, T.; Murray, F.J. Assessing the Impacts of In-Feed Probiotic on the Growth Performance and Health Condition of Pangasius (Pangasianodon hypophthalmus) in a Farm Trial. Aquac. Rep. 2021, 20, 100699. [Google Scholar] [CrossRef]
- Hasan, N.A.; Haque, M.M.; Hinchliffe, S.J.; Guilder, J. A Sequential Assessment of WSD Risk Factors of Shrimp Farming in Bangladesh: Looking for a Sustainable Farming System. Aquaculture 2020, 526, 735348. [Google Scholar] [CrossRef]
- Karim, M.; Keus, H.J.; Ullah, M.H.; Kassam, L.; Phillips, M.; Beveridge, M. Investing in Carp Seed Quality Improvements in Homestead Aquaculture: Lessons from Bangladesh. Aquaculture 2016, 453, 19–30. [Google Scholar] [CrossRef]
- Łączyńska, B.; Palińska-Żarska, K.; Nowosad, J.; Biłas, M.; Krejszeff, S.; Müller, T.; Kucharczyk, D.; Żarski, D. Effect of Age, Size and Digestive Tract Development on Weaning Effectiveness in Crucian Carp, Carassius carassius (Linnaeus, 1758). J. Appl. Ichthyol. 2016, 32, 866–872. [Google Scholar] [CrossRef]
- Ahammad, A.K.S.; Asaduzzaman, M.; Asakawa, S.; Watabe, S.; Kinoshita, S. Regulation of Gene Expression Mediating Indeterminate Muscle Growth in Teleosts. Mech. Dev. 2015, 137, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Johnston, I.A.; Lee, H.T.; Macqueen, D.J.; Paranthaman, K.; Kawashima, C.; Anwar, A.; Kinghorn, J.R.; Dalmay, T. Embryonic Temperature Affects Muscle Fibre Recruitment in Adult Zebrafish: Genome-Wide Changes in Gene and MicroRNA Expression Associated with the Transition from Hyperplastic to Hypertrophic Growth Phenotypes. J. Exp. Biol. 2009, 212, 1781–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asaduzzaman, M.; Akolkar, D.B.; Kinoshita, S.; Watabe, S. The Expression of Multiple Myosin Heavy Chain Genes during Skeletal Muscle Development of Torafugu Takifugu Rubripes Embryos and Larvae. Gene 2013, 515, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Weatherley, A.H.; Gill, H.S. The Role of Muscle in Determining Growth and Size in Teleost Fish. Experientia 1989, 45, 875–878. [Google Scholar] [CrossRef]
- Suburamanian, D.; Heo, M.S.; Chellam, B. Genetic Assessment for Growth Performance in Diallel Cross of Wild and Cultured Giant Freshwater Prawn, Macrobrachium rosenbergii. J. Appl. Aquac. 2015, 27, 342–364. [Google Scholar] [CrossRef]
- Crooijmans, R.P.M.A.; Bierbooms, V.A.F.; Komen, J.; Van Der Poel, J.J.; Groenen, M.A.M. Microsatellite Markers in Common Carp (Cyprinus carpio L.). Anim. Genet. 1997, 28, 129–134. [Google Scholar] [CrossRef]
- DeWoody, J.A.; Avise, J.C. Microsatellite Variation in Marine, Freshwater and Anadromous Fishes Compared with Other Animals. J. Fish Biol. 2000, 56, 461–473. [Google Scholar] [CrossRef]
- Alam, M.S.; Jahan, M.; Hossain, M.M.; Islam, M.S. Population Genetic Structure of Three Major River Populations of Rohu, Labeo rohita (Cyprinidae: Cypriniformes) Using Microsatellite DNA Markers. Genes Genom. 2009, 31, 43–51. [Google Scholar] [CrossRef]
- Shah, M.S.; Sutapa, S.S.; Islam, S.S.; Rahaman, S.M.B.; Huq, K.A.; Rahman, M.A. Heterosis Analysis in Strain-Crossed Hybrid Rohu (Labeo rohita) through Microsatellite DNA Variability Assay. Turkish J. Fish. Aquat. Sci. 2017, 17, 1157–1166. [Google Scholar]
- Dudu, A.; Georgescu, S.E.; Costache, M. Evaluation of Genetic Diversity in Fish Using Molecular Markers. In Molecular Approaches to Genetic Diversity; Caliskan, M., Oz, G.C., Kavaklı, İ.H., Ozcan, B., Eds.; IntechOpen: London, UK, 2015; pp. 163–193. ISBN 978-953-51-2042-1. [Google Scholar]
- Sarder, R. Freshwater Fish Seed Resources in Bangladesh. In Proceedings of the Assessment of Freshwater Fish Resources for Sustainable Aquaculture; Bondad-Reantaso, M.G., Ed.; FAO Fisheries Technical Paper No. 501.; FAO: Rome, Italy, 2007; pp. 105–128. [Google Scholar]
- Ahammad, A.K.S.; Hasan, N.A.; Haque, M.M.; Bashar, A.; Ahmed, M.B.U.; Alam, M.A.; Asaduzzaman, M.; Bashar, M.A.; Mahmud, Y. Environmental Factors and Genetic Diversity as Drivers of Early Gonadal Maturation: A Gonadosomatic Index Based Investigation on Indian Shad, Tenualosa ilisha Population of Bangladesh. Front. Mar. Sci. 2021, 8, 758868. [Google Scholar] [CrossRef]
- Tave, D. Genetics for Fish Hatchery Managers, 2nd ed.; Tave, D., Ed.; Springer: New York, NY, USA, 1993; ISBN 9780442004170. [Google Scholar]
- Johnston, I.A. Muscle Development and Growth: Potential Implications for Flesh Quality in Fish. Aquaculture 1999, 177, 99–115. [Google Scholar] [CrossRef]
- Humason, G.L. Animal Tissue Techniques, 3rd ed.; W. H. Freeman and Company: San Francisco, CA, USA; London, UK, 1962. [Google Scholar]
- Rowlerson, A.; Veggetti, A. Cellular Mechanisms of Post-Embryonic Muscle Growth in Aquaculture Species. In Fish Physiology: Muscle Development and Growth; Johnston, I.A., Ed.; Academic Press: Cambridge, MA, USA, 2001; Volume 18, pp. 103–140. [Google Scholar]
- Weatherley, A.H.; Gill, H.S. Growth Dynamics of White Myotomal Muscle Fibres in the Bluntnose Minnow, Pimephales Notatus Rafinesque, and Comparison with Rainbow Trout, Salmo Gairdneri Richardson. J. Fish Biol. 1984, 25, 13–24. [Google Scholar] [CrossRef]
- Patel, A.; Das, P.; Barat, A.; Meher, P.K.; Jayasankar, P. Utility of Cross-Species Amplification of 34 Rohu Microsatellite Loci in Labeo bata, and Their Transferability in Six Other Species of the Cyprinidae Family. Aquac. Res. 2010, 41, 590–593. [Google Scholar] [CrossRef]
- Alam, M.S.; Islam, M.S. Population Genetic Structure of Catla catla (Hamilton) Revealed by Microsatellite DNA Markers. Aquaculture 2005, 246, 151–160. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roush, K.S.; Jeffries, M.K.S. Gonadosomatic Index as a Confounding Variable in Fish-Based Screening Assays for the Detection of Anti-Estrogens and Nonaromatizable Androgens. Environ. Toxicol. Chem. 2019, 38, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Tucker, E.K.; Zurliene, M.E.; Suski, C.D.; Nowak, R.A. Gonad Development and Reproductive Hormones of Invasive Silver Carp (Hypophthalmichthys molitrix) in the Illinois River. Biol. Reprod. 2020, 102, 647–659. [Google Scholar] [CrossRef]
- Chapman, D.C.; Deters, J.E. Effect of Water Hardness and Dissolved-Solid Concentration on Hatching Success and Egg Size in Bighead Carp. Trans. Am. Fish. Soc. 2009, 138, 1226–1231. [Google Scholar] [CrossRef]
- Rahman, M.M.; Habib, M.A.; Shah, M.S. Induced Breeding of Cirrhinus reba (Ham.) and Labeo bata (Ham.). Khulna Univ. Stud. 2007, 8, 286–292. [Google Scholar]
- Lashari, P.K.; Narejo, N.T.; Laghari, M.Y.; Mastoi, A.M. Studies on the Gonadosomatic Index and Fecundity of a Carp Cirrhinus reba (Hamilton) from Fishponds of District Jacobabad, Sindh, Pakistan. Pak. J. Zool. 2007, 39, 95–98. [Google Scholar]
- Hossain, Q.Z. Induced Breeding of the Fish Cirrhinus Reba by Pituitary Gland Extract and Survival of Spawn in Nursery Pond. J. Asiat. Soc. 2001, 27, 205–213. [Google Scholar]
- Chattopadhyay, N.R.; Patra, S.; Giri, S.; Naskar, A.; Roy, U. Low Cost Innovative Technology for Seed Production of Cirrhinus reba (Hamilton, 1822) at Backyard of Murshidabad District, West Bengal, by Using Ovaprim. Int. J. Adv. Fish. Aquat. Sci. 2013, 1, 49–56. [Google Scholar]
- Ali, F.S.; Nazmi, H.M.; Abdelaty, B.S.; El-Far, A.M.; Goda, A.M.A.S. Genetic Improvement of Farmed Nile Tilapia (Oreochromis niloticus) through Se-Lective Breeding in Egypt. Int. J. Fish. Aquat. Stud. 2017, 5, 395–401. [Google Scholar]
- Sayeed, M.A. Bin Strain Crossing in Mrigal (Cirrhinus cirrhosus): An Avenue to Persuade Heterosis in F1 Generation of Wild×hatchery Hybrid. J. Fish. 2015, 3, 245–250. [Google Scholar] [CrossRef]
- Zimmerman, A.M.; Lowery, M.S. Hyperplastic Development and Hypertrophic Growth of Muscle Fibers in the White Seabass (Atractoscion nobilis)—Zimmerman—1999—Journal of Experimental Zoology—Wiley Online Library. J. Exp. Zool. 1999, 284, 299–308. [Google Scholar] [CrossRef]
- Alami-Durante, H.; Olive, N.; Rouel, M. Early Thermal History Significantly Affects the Seasonal Hyperplastic Process Occurring in the Myotomal White Muscle of Dicentrarchus Labrax Juveniles. Cell Tissue Res. 2007, 327, 553–570. [Google Scholar] [CrossRef]
- Albors, O.L.; Arizcun, M.; Abellán, E.; Blanco, A.; Ayala, M.D.; Pastor, L.M.; Latorre, R. Posthatch Development of the Axial Musculature of the Common Dentex Dentex dentex, L (Teleostei). Histol. Histopathol. 2010, 25, 1557–1571. [Google Scholar] [CrossRef]
- Johnston, I.A.; Andersen, Ø. Number of Muscle Fibres in Adult Atlantic Cod Varies with Temperature during Embryonic Development and Pantophysin (PanI) Genotype. Aquat. Biol. 2008, 4, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Rowlerson, A.; Mascarello, F.; Radaelli, G.; Veggetti, A. Differentiation and Growth of Muscle in the Fish Sparus aurata (L): II. Hyperplastic and Hypertrophic Growth of Lateral Muscle from Hatching to Adult. J. Muscle Res. Cell Motil. 1995, 16, 223–236. [Google Scholar] [CrossRef]
- Campos, C.; Valente, L.M.P.; Conceição, L.E.C.; Engrola, S.; Sousa, V.; Rocha, E.; Fernandes, J.M.O. Incubation Temperature Induces Changes in Muscle Cellularity and Gene Expression in Senegalese Sole (Solea senegalensis). Gene 2013, 516, 209–217. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Moutou, K.A.; Conceição, L.E.C.; Engrola, S.; Fernandes, J.M.O.; Johnston, I.A. What Determines Growth Potential and Juvenile Quality of Farmed Fish Species? Rev. Aquac. 2013, 5, S168–S193. [Google Scholar] [CrossRef] [Green Version]
- Johnston, I.A. Environment and Plasticity of Myogenesis in Teleost Fish. J. Exp. Biol. 2006, 209, 2249–2264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, P.J.; Thorpe, J.E. Hyperplasia and Hypertrophy in the Growth of Skeletal Muscle in Juvenile Atlantic Salmon, Salmo salar L. J. Fish Biol. 1990, 37, 505–519. [Google Scholar] [CrossRef]
- Johnston, I.A.; Bower, N.I.; Macqueen, D.J. Growth and the Regulation of Myotomal Muscle Mass in Teleost Fish. J. Exp. Biol. 2011, 214, 1617–1628. [Google Scholar] [CrossRef] [Green Version]
- Johnston, I.A.; Alderson, R.; Sandham, C.; Dingwall, A.; Mitchell, D.; Selkirk, C.; Nickell, D.; Baker, R.; Robertson, B.; Whyte, D.; et al. Muscle Fibre Density in Relation to the Colour and Texture of Smoked Atlantic Salmon (Salmo salar L.). Aquaculture 2000, 189, 335–349. [Google Scholar] [CrossRef]
- Dal Pai-Silva, M.; Carvalho, R.F.; Pellizzon, C.H.; Dal Pai, V. Muscle Growth in Nile Tilapia (Oreochromis niloticus): Histochemical, Ultrastructural and Morphometric Study. Tissue Cell 2003, 35, 179–187. [Google Scholar] [CrossRef]
- Hasanat, M.A.; Mollah, M.F.A.; Alam, M.S. Microsatellite DNA Marker Analysis Revealed Low Levels of Genetic Variability in the Wild and Captive Populations of Cirrhinus cirrhosus (Hamilton) (Cyprinidae: Cypriniformes). Biotechnol. J. Int. 2015, 5, 206–215. [Google Scholar] [CrossRef]
- Qadeer, I.; Abbas, K. Microsatellite Markers Based Genetic Structure of Rohu (Labeo rohita) in Selected Riverine Populations of Punjab, Pakistan. Pakistan J. Agric. Res. 2017, 54, 875–882. [Google Scholar]
- Tonny, U.S.; Faroque, A.A.; Sarder, R.I.; Mollah, F.A. Assessment of Genetic Variation of Wild Rohu Labeo rohita (Hamilton 1822) Populations Using Microsatellite Markers. African J. Fish. Sci. 2014, 2, 168–175. [Google Scholar]
- Ahammad, A.K.S.; Ahmed, M.B.U.; Akhter, S.; Hossain, M.K. Landmark-Based Morphometric and Meristic Analysis in Response to Characterize the Wild Bhagna, Labeo ariza Populations for Its Conservation. J. Bangladesh Agric. Univ. 2018, 16, 164–170. [Google Scholar] [CrossRef] [Green Version]
Locus | Primer Sequence | Annealing Temperature (°C) |
---|---|---|
Lr1 | F-GAAAGCTGCTCGTCCTTGAA R-GAAAGCTGCTCGTCCTTGAA | 53 |
Lr2 | F-GGGTGTGGGAGAGAAAGAGAG R-GGAGTCTGACAAATGCAGCAAG | 62 |
Lr3 | F-ATCTGGCTGCCTAATCACC R-CATCGGCGACTGCACTGGA | 58 |
Lr22 | F-GATCTGTGTGTGTGTGTGC R-GGTGGCGACACAACAAATG | 58 |
Lr24 | F-CAAGGCGAAAAGTGTCCAT R-AAGAAATTGGTAAAGTGTTTC | 56 |
Lr27 | F-TGGAAATCGAAGGCGTTTCCAC R-AGCACTTACAGTCCATTGGCTC | 60 |
Lr28 | F-AAAGGAAACAGACTCCATCAG R-CGCTAGCACTTTAATTTCACAGAG | 50 |
Lr29 | F-CCCACGCAAACTCCTGTT R-GGAACAAGGCCAGAGCTTTA | 50 |
Populations | Initial Size | Final Size | Survival Rate (%) | ||
---|---|---|---|---|---|
Length (cm) | Weight (g) | Length (cm) | Weight (g) | ||
Atrai | 5.89 ± 0.85 a | 7.08 ± 0.94 a | 16.78 ± 0.68 a | 95.92 ± 2.24 a | 84 ± 0.15 a |
Kangsha | 5.80 ± 0.73 a | 7.06 ± 0.91 a | 14.36 ± 1.05 b | 90.36 ± 1.88 b | 91 ± 0.3 b |
Jamuna | 5.85 ± 0.92 a | 7.01 ± 0.86 a | 13.30 ± 3.05 b | 89.65 ± 2.46 b | 86 ± 0.12 a |
Parameters | G1K♀K♂ | G2J♀J♂ | G3A♀A♂ | G4K♀A♂ | G5K♀J♂ | G6A♀K♂ | G7A♀J♂ | G8J♀K♂ | G9J♀A♂ |
---|---|---|---|---|---|---|---|---|---|
Fertilization rate (%) | 92 ± 2.01 d | 94 ± 1.09 b | 93 ± 1.11 c | 95 ± 2.11 a | 91 ± 3.03 e | 90 ± 1.99 f | 92 ± 2.05 d | 91 ± 2.21 c | 91 ± 1.97 e |
Hatching rate (%) | 87 ± 1.21 b | 84 ± 3.08 e | 85 ± 2.08 d | 88 ± 1.03 a | 86 ± 2.58 c | 81 ± 4.01 f | 83 ± 1.57 f | 82 ± 2.09 b | 84 ± 3.01 d |
Survival rate (%) | 79 ± 1.03 d | 76 ± 1.04 e | 81 ± 3.44 b | 82 ± 1.88 a | 80 ± 1.66 c | 81 ± 3.77 b | 78 ± 2.68 b | 80 ± 1.67 a | 79 ± 1.22 c |
Line | Initial Length (cm) | Final Length (cm) | Length Gain (cm) | Initial Weight (g) | Final Weight (g) | Weight Gain (g) | SGR (% Day−1) |
---|---|---|---|---|---|---|---|
G1K♀K♂ | 3.81 ± 0.20 | 6.30 ± 0.34 a | 2.49 ± 0.30 a | 0.59 ± 0.20 | 3.72 ± 0.40 a | 3.13 ± 0.20 a | 3.07 ± 0.10 a |
G2J♀J♂ | 3.84 ± 0.30 | 6.28 ± 0.50 a | 2.44 ± 0.20 a | 0.61 ± 0.30 | 3.65 ± 0.50 a | 3.04 ± 0.20 b | 2.98 ± 0.20 b |
G3A♀A♂ | 3.95 ± 0.10 | 6.35 ± 0.50 a | 2.40 ± 0.30 a | 0.62 ± 0.20 | 3.76 ± 0.30 a | 3.14 ± 0.30 a | 3.00 ± 0.20 b |
G4K♀A♂ | 3.98 ± 0.60 | 6.65 ± 0.50 b | 2.67 ± 0.40 b | 0.57 ± 0.20 | 3.96 ± 0.50 b | 3.39 ± 0.20 c | 3.23 ± 0.20 c |
G5K♀J♂ | 3.85 ± 0.80 | 6.42 ± 0.60 a | 2.57 ± 0.20 c | 0.59 ± 0.20 | 3.83 ± 0.40 c | 3.24 ± 0.10 d | 3.12 ± 0.30 a |
G6A♀K♂ | 3.90 ± 0.50 | 6.53 ± 0.30 c | 2.63 ± 0.20 b | 0.60 ± 0.10 | 3.79 ± 0.30 c | 3.19 ± 0.30 a | 3.07 ± 0.30 a |
G7A♀J♂ | 3.83 ± 0.60 | 6.30 ± 0.26 b | 2.45 ± 0.30 a | 0.58 ± 0.30 | 3.78 ± 0.10 a | 3.11 ± 0.20 b | 3.05 ± 0.20 a |
G8J♀K♂ | 3.86 ± 0.20 | 6.36 ± 0.48 a | 2.48 ± 0.40 b | 0.60 ± 0.40 | 3.79 ± 0.30 b | 3.13 ± 0.30 c | 3.15 ± 0.30 b |
G9J♀A♂ | 3.91 ± 0.50 | 6.41 ± 0.60 b | 2.52 ± 0.20 c | 0.61 ± 0.50 | 3.81 ± 0.40 c | 3.22 ± 0.40 d | 3.08 ± 0.40 c |
Trait | Heterosis (%) | |||||
---|---|---|---|---|---|---|
G4K♀A♂ | G5K♀J♂ | G6A♀K♂ | G7A♀J♂ | G8J♀K♂ | G9J♀A♂ | |
Length | 8.87 | 6.07 | 7.19 | 4.14 | 5.18 | 5.61 |
Weight | 24.74 | 23.10 | 21.37 | 20.50 | 22.29 | 22.24 |
Hatching rate | 2.30 | 0.58 | −5.81 | −1.77 | 4.00 | −0.59 |
Survival rate | 2.50 | 3.20 | 1.25 | −0.63 | 3.20 | 0.63 |
Locus | Parameters | G1K♀K♂ | G2J♀J♂ | G3A♀A♂ | G4K♀A♂ | G5K♀J♂ | G6A♀K♂ | G7A♀J♂ | G8J♀K♂ | G9J♀A♂ |
---|---|---|---|---|---|---|---|---|---|---|
Lr3 | Na | 2.000 | 1.000 | 2.000 | 2.000 | 2.000 | 1.000 | 1.000 | 2.000 | 1.000 |
Ne | 1.800 | 1.000 | 1.385 | 1.385 | 1.385 | 1.000 | 1.000 | 1.385 | 1.000 | |
Ho | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
He | 0.444 | 0.000 | 0.278 | 0.278 | 0.278 | 0.000 | 0.000 | 0.278 | 0.000 | |
1-(Ho/He) | 1.000 | N/A | 1.000 | 1.000 | 1.000 | N/A | N/A | 1.000 | N/A | |
Lr24 | Na | 2.000 | 3.000 | 3.000 | 4.000 | 2.000 | 2.000 | 3.000 | 2.000 | 2.000 |
Ne | 1.600 | 2.571 | 2.323 | 2.400 | 1.600 | 1.832 | 2.333 | 1.677 | 1.786 | |
Ho | 0.167 | 0.333 | 0.500 | 0.833 | 0.500 | 0.750 | 0.540 | 0.510 | 0.450 | |
He | 0.375 | 0.611 | 0.569 | 0.583 | 0.375 | 0.469 | 0.420 | 0.530 | 0.550 | |
1-(Ho/He) | 0.556 | 0.455 | 0.122 | −0.429 | −0.333 | −0.600 | −0.321 | 0.167 | 0.360 | |
Lr27 | Na | 4.000 | 5.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 |
Ne | 2.057 | 4.500 | 3.600 | 3.130 | 3.429 | 2.764 | 2.650 | 3.720 | 3.120 | |
Ho | 0.500 | 0.667 | 0.333 | 0.833 | 0.833 | 0.833 | 0.530 | 0.610 | 0.550 | |
He | 0.514 | 0.778 | 0.722 | 0.681 | 0.708 | 0.639 | 0.467 | 0.649 | 0.572 | |
1-(Ho/He) | 0.027 | 0.143 | 0.538 | −0.224 | −0.176 | −0.304 | −0.211 | 0.143 | 0.116 | |
Average number of alleles | 2.250 | 2.500 | 2.500 | 2.750 | 2.250 | 2.000 | 2.250 | 2.250 | 2.500 | |
Average effective number of alleles | 1.614 | 2.268 | 2.077 | 1.979 | 1.853 | 1.663 | 1.713 | 1.816 | 2.122 | |
Average Ho over loci | 0.167 | 0.250 | 0.208 | 0.417 | 0.333 | 0.396 | 0.342 | 0.249 | 0.233 | |
Average He over loci | 0.333 | 0.347 | 0.392 | 0.385 | 0.340 | 0.277 | 0.316 | 0.288 | 0.298 | |
Average 1-(Ho/He) over loci | 0.528 | 0.299 | 0.553 | −0.116 | 0.163 | −0.452 | −0.144 | 0.178 | 0.211 | |
Mean percentage of polymorphic loci | 75% | 50% | 75% | 75% | 75% | 50% | 50% | 75% | 50% |
Group | G1K♀K♂ | G2J♀J♂ | G3A♀A♂ | G4K♀A♂ | G5K♀J♂ | G6A♀K♂ | G7A♀J♂ | G8J♀K♂ | G9J♀A♂ |
---|---|---|---|---|---|---|---|---|---|
G1K♀K♂ | **** | 1.756 | 0.838 | 1.433 | 1.138 | 1.247 | 1.233 | 1.168 | 1.323 |
G2J♀J♂ | 0.129 | **** | 1.702 | 1.970 | 3.943 | 1.197 | 1.870 | 2.978 | 2.134 |
G3A♀A♂ | 0.335 | 0.217 | **** | 2.323 | 1.373 | 7.277 | 1.886 | 2.424 | 1.778 |
G4K♀A♂ | 0.265 | 0.169 | 0.215 | **** | 1.742 | 1.411 | 2.446 | 1.687 | 1.534 |
G5K♀J♂ | 0.314 | 0.251 | 0.053 | 0.245 | **** | 3.000 | 3.132 | 2.863 | 2.180 |
G6A♀K♂ | 0.321 | 0.212 | 0.050 | 0.063 | 0.237 | **** | 1.664 | 1.699 | 3.214 |
G7A♀J♂ | 0.295 | 0.245 | 0.097 | 0.155 | 0.315 | 0.261 | **** | 2.357 | 1.876 |
G8J♀K♂ | 0.268 | 0.164 | 0.123 | 0.187 | 0.286 | 0.225 | 0.313 | **** | 2.665 |
G9J♀A♂ | 0.310 | 0.198 | 0.212 | 0.280 | 0.317 | 0.249 | 0.122 | 0.220 | **** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahammad, A.K.S.; Hasan, N.A.; Bashar, A.; Haque, M.M.; Abualreesh, M.H.; Islam, M.M.; Datta, B.K.; Rabbi, M.F.; Khan, M.G.Q.; Alam, M.S. Diallel Cross Application and Histomolecular Characterization: An Attempt to Develop Reference Stock of Labeo ariza. Biology 2022, 11, 691. https://doi.org/10.3390/biology11050691
Ahammad AKS, Hasan NA, Bashar A, Haque MM, Abualreesh MH, Islam MM, Datta BK, Rabbi MF, Khan MGQ, Alam MS. Diallel Cross Application and Histomolecular Characterization: An Attempt to Develop Reference Stock of Labeo ariza. Biology. 2022; 11(5):691. https://doi.org/10.3390/biology11050691
Chicago/Turabian StyleAhammad, A. K. Shakur, Neaz A. Hasan, Abul Bashar, Mohammad Mahfujul Haque, Muyassar H. Abualreesh, Md. Mehefuzul Islam, Biraj Kumar Datta, Md. Fazla Rabbi, Mohd Golam Quader Khan, and Md. Samsul Alam. 2022. "Diallel Cross Application and Histomolecular Characterization: An Attempt to Develop Reference Stock of Labeo ariza" Biology 11, no. 5: 691. https://doi.org/10.3390/biology11050691
APA StyleAhammad, A. K. S., Hasan, N. A., Bashar, A., Haque, M. M., Abualreesh, M. H., Islam, M. M., Datta, B. K., Rabbi, M. F., Khan, M. G. Q., & Alam, M. S. (2022). Diallel Cross Application and Histomolecular Characterization: An Attempt to Develop Reference Stock of Labeo ariza. Biology, 11(5), 691. https://doi.org/10.3390/biology11050691