Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Pathophysiology of the Metabolic Syndrome
1.1.1. Obesity
1.1.2. Insulin Resistance
1.1.3. Free Radicals
1.1.4. Renin–Angiotensin–Aldosterone System (RAA)
1.2. Cardiovascular Consequences
1.3. Polyphenols
1.4. Usability of Animal Models in MetS Research
2. Methods
2.1. Search Strategy
2.2. Inclusion Criteria
- The research performed on preferable animal models in the context of metabolic syndrome (Zucker Fatty Rat (fa/fa), Zucker Diabetic Fatty Rat, Spontaneously Hypertensive Rat (SHR), animal models with induced diabetes/obesity/hypertension (pathophysiological changes playing an essential role in metabolic syndrome)).
- The presence of a control group and the comparison between the polyphenol’s intervention group and the placebo group were incorposed. The administration route and the dosage of polyphenols were not restricted.
2.3. Exclusion Criteria
- Studies without indicating a statistically significant difference between the control and experimental group.
- Papers with incomplete data and duplicated publications.
- Studies on animal models differed from those mentioned in the inclusion criteria.
3. Animal Model of Obesity Zucker Fatty Rats (fa/fa)
3.1. Red Wine
3.2. Green Tea
3.3. Quercetin
4. Animal Model of Diabetes: Zucker Diabetic Fatty (ZDF) Rats
4.1. Pomegranate
4.2. Cocoa
5. Animal Model of Hypertension: Spontaneously Hypertensive Rat (SHR)
Resveratrol
6. Animal Models with Induced Diabetes/Obesity/Hypertension
6.1. Cinnamon
6.2. Curcumin
Substance | Animal Model | Dose (Time) | Metabolic Effect | Mechanism | References |
---|---|---|---|---|---|
Red wine | Zucker Fatty rats | 20 mg/kg BW (8 weeks) | ↑ FS ↑ CO ↓ serum glucose ↓ LDL cholesterollevel ↓ TG level ↓ peripheral arterial resistance ↓ superoxide anions ↓ thromboxane A2 ↓ 8-isoprostane | ↑ NO bioavailability ↑ eNOS activity ↓ NADPH oxidase expression | [60] |
Green tea | Zucker Fatty rats | 200 mg/kg BW (8 weeks) | ↓ body weight ↓ visceral fat ↓ hepatic lipogenesis ↓ insulin level ↓ glucose level ↓ lipids level | ↑ expression AMPK-Thr172 ↑ expression phosphorylated acetyl-CoA carboxylase (ACC) ↑ sterol regulatory element-binding protein 1c (SREBP1c) | [63] |
Zucker Fatty rats, Sprague Dawley rats | 15 mg, 20 mg, 40 mg (7 days, 4 days) | ↓ food intake ↓ testosterone level ↓ estradiol level ↓ LH level ↓ leptin level ↓ insulin level ↓ glucose level ↓ IGF-1 level ↓ cholesterol level ↓ TG level | ↓ food intake (hypothalamic neuropeptide gene expression alternation?, changes in bilirubin, alkaline phosphatase activity?) | [64] | |
Zucker Fatty rats | 200 mg/kg BW (8 weeks) | ↓ body weight ↓ visceral fat ↓ insulin level ↓ glucose level ↓ insulin resistance | modulation of insulin signaling protein in skeletal muscle ↑ expression and translocation of GLUT-4 in skeletal muscle ↓ activation of the inhibitory protein kinase isoform- PKC-θ | [65] | |
Quercetin | Zucker Fatty rats | 2 mg/kg BW 10 mg/kg BW (10 weeks) | ↓ dyslipidemia ↓ hypertension ↓ insulin resistance ↓ weight (only dose 10mg/kg BW) + anti-inflammatory effect | ↑ eNOS expression ↑ adiponectin level in plasma ↓ TNF-alpha production in visceral tissue | [74] |
Pomegranate | Zucker Diabetic Fatty rats | 500 mg/kg BW (6 weeks) | ↓ TG level ↓ lipid droplet content in liver | ↑ expression PPAR-α ↑ expression acyl-CoA oxidase ↑ expression CPT1 | [80] |
Zucker Diabetic Fatty | 500 mg/kg BW (6 weeks) | ↓ hyperglycemia ↓ hyperlipidemia ↓ cardiac fibrosis | ↓ NF- κB activation in macrophages ↓ expression ET-1 | [81] | |
Zucker Diabetic Fatty | 500 mg/kg BW (6 weeks) | ↓ cardiac TG accumulation ↓ TG level ↓ cholesterol level | ↑ cardiac expression PPAR-α ↑ cardiac expression CPT-1 ↑ cardiac expression ACO ↑ cardiac expression AMPKαK ↓ cardiac expression acetyl-CoA carboxylase (ACC) | [82] | |
Cocoa | Zucker Diabetic Fatty | 10% cocoa-rich diet (10 weeks) | ↑glucose tolerance ↓ body weight ↓ insulin resistance ↓ glucose level ↓ insulin level + nephroprotective effect | ↓ renal synthesis PEPCK ↓ renal synthesis G-6-P ↓ expression of glucose transporters (SGLT-2, GLUT-2) in the renal cortex | [84] |
Zucker diabetic Fatty | 10% cocoa-rich diet (9 weeks) | ↓ body weight ↓ lipid accumulation in liver cells | ↑ phosphorylated AMPK level in liver ↑ phosphorylated protein kinase B (AKT) level in liver ↓ phosphorylated protein kinase C (PKCζ) level in liver | [85] | |
Zucker diabetic Fatty | 10% cocoa-rich diet (10 weeks) | ↑ glucose homeostasis ↑ intestinal integrity + modification of gut microbiota | ↓ amount of lactate- producing bacteria ↓ expression TNF-α ↓ expression IL-6 | [86] | |
Resveratrol | Spontaneously Hypertensive rats | dissolved in drinking water (concentration 50 mg/L), ad libitum (10 weeks) | ↓ hypertension ↓ oxidative stress | ↓ H2O2 content ↓ SOD activity ↓ eNOS uncoupling ↓ NO scavenging | [91] |
Spontaneously Hypertensive rats | 2.5 mg/kg BW (10 weeks) | ↓ concentric heart hypertrophy ↓ systolic heart dysfunction | ↓ oxidative stress in cardiac muscle tissue | [92] | |
Spontaneously Hypertensive rats | 50 mg/kg BW (28 days) | ↓ SBP | ↑ outward voltage-dependent potassium currents (IK) ↓ inward voltage-dependent sodium currents (INa), ↓ inward voltage-dependent calcium currents (ICa) ↓ inward voltage-dependent nicotinic currents (IAch) | [93] | |
Cinnamon | Wistar rats (high-fat/high-fructose diet) | 20 g cinnamon-rich/kg of diet (12 weeks) | ↓ insulin resistance ↓ peritoneal fat accumulation | ↑ peroxisome proliferators-activated receptors activity? | [104] |
Sprague Dawley rats (high-fat diet + subcutaneous injection of alloxan) | 200 mg/kg BW 400 mg/kg BW (6 weeks) | ↑ HDL cholesterol level ↓ body weight ↓ LDL cholesterol level ↓ leptin level ↓ glucose level ↓ liver enzymes levels + antioxidant effect | ↓ the intestinal absorption of cholesterol? ↓ appetite? ↓ oxidative stress? | [105] | |
Curcumin | Wistar rats (high-fat diet + streptozotocin) | 80 mg/kg BW (8 weeks) | ↓ glucose level ↓ insulin resistance ↓ lipid level ↓ lipid peroxidation | ↑ expression GLUT-4 | [108] |
Wistar rats (bile duct ligation) | 100 mg/kg BW (4 weeks) | ↓ hepatic fat accumulation ↓ lipid peroxidation ↓ hepatic fibrosis | ↑expression AMPK ↑expression CPT-1a | [109] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018, 36, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A consensus statement from the international diabetes federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Wen, J.; Yang, J.; Shi, Y.; Liang, Y.; Wang, F.; Duan, X.; Lu, X.; Tao, Q.; Lu, X.; Tian, Y.; et al. Comparisons of different metabolic syndrome definitions and associations with coronary heart disease, stroke, and peripheral arterial disease in a rural Chinese population. PLoS ONE 2015, 10, e0126832. [Google Scholar] [CrossRef]
- Wang, H.H.; Lee, D.K.; Liu, M.; Portincasa, P.; Wang, D.Q.-H. Novel Insights into the Pathogenesis and Management of the Metabolic Syndrome. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 189–230. [Google Scholar] [CrossRef]
- Dabke, K.; Hendrick, G.; Devkota, S. The gut microbiome and metabolic syndrome. J. Clin. Investig. 2019, 129, 4050–4057. [Google Scholar] [CrossRef]
- Penman, K. Does Metabolic Syndrome Increase Cardiovascular Risk? Ph.D. Thesis, Auckland University of Technology, Auckland, New Zealand, 2011. [Google Scholar]
- Tune, J.D.; Goodwill, A.G.; Sassoon, D.J.; Mather, K.J. Cardiovascular consequences of metabolic syndrome. Transl. Res. 2017, 183, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.-L.; Chen, X.-B.; Lu, J.-G.; Hou, Z.-H.; Fang, X.; Gao, Y.; Yu, F.-F. Metabolic syndrome and coronary artery calcification: A community-based natural population study. Chin. Med. J. 2013, 126, 4618–4623. [Google Scholar]
- Marjani, A. Metabolic syndrome and diabetes: A review. J. Clin. Basic Res. 2017, 1, 36–43. [Google Scholar]
- Zhang, P.; Tian, B. Metabolic syndrome: An important risk factor for Parkinson’s disease. Oxidative Med. Cell. Longev. 2014, 2014, 729194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostoglou-Athanassiou, I.; Athanassiou, P. Metabolic syndrome and sleep apnea. Hippokratia 2008, 12, 81. [Google Scholar]
- Russo, A.; Autelitano, M.; Bisanti, L. Metabolic syndrome and cancer risk. Eur. J. Cancer 2008, 44, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.; Bitton-Worms, K.; LeRoith, D. The link between the metabolic syndrome and cancer. Int. J. Biol. Sci. 2011, 7, 1003. [Google Scholar] [CrossRef]
- Metere, A.; Giacomell, L. Absorption, metabolism and protective role of fruits and vegetables polyphenols against gastric cancer. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5850–5858. [Google Scholar] [CrossRef]
- Bastien, M.; Poirier, P.; Lemieux, I.; Després, J.-P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc. Dis. 2014, 56, 369–381. [Google Scholar] [CrossRef]
- Després, J.-P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Buse, J.B.; Polonsky, K.S.; Burant, C.F. Type 2 diabetes mellitus. In Williams Textbook of Endocrinology; Elsevier/Saunders: Philadelphia, PA, USA, 2011; pp. 1371–1435. [Google Scholar]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.S.; Cui, W. Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016, 143, 3050–3060. [Google Scholar] [CrossRef] [Green Version]
- Schulman, I.H.; Zhou, M.-S. Vascular insulin resistance: A potential link between cardiovascular and metabolic diseases. Curr. Hypertens. Rep. 2009, 11, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.-S.; Wang, A.; Yu, H. Link between insulin resistance and hypertension: What is the evidence from evolutionary biology? Diabetol. Metab. Syndr. 2014, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, U.; Khaliq, S.; Ahmad, H.U.; Manzoor, S.; Lone, K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones 2018, 17, 299–313. [Google Scholar] [CrossRef]
- Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev. 2005, 26, 19. [Google Scholar] [PubMed]
- Cignarelli, A.; Genchi, V.A.; Perrini, S.; Natalicchio, A.; Laviola, L.; Giorgino, F. Insulin and Insulin Receptors in Adipose Tissue Development. Int. J. Mol. Sci. 2019, 20, 759. [Google Scholar] [CrossRef] [Green Version]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef]
- Obeagu, E. A Review on Free Radicals and Antioxidants. Infect. Disord. Drug Targets 2020, 4, 123–133. [Google Scholar] [CrossRef]
- Smith, M.M.; Minson, C.T. 2012 Obesity and adipokines: Effects on sympathetic overactivity. J. Physiol. 2018, 590, 1787–1801. [Google Scholar] [CrossRef]
- Bovolini, A.; Garcia, J.; Andrade, M.A.; Duarte, J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med. 2021, 42, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Campese, V.M.; Ye, S.; Zhong, H.; Yanamadala, V.; Ye, Z.; Chiu, J. Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H695–H703. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, Y.; Wang, H.-J.; Gao, X.-Y.; Wang, W.; Zhu, G.-Q. Reactive oxygen species in paraventricular nucleus modulates cardiac sympathetic afferent reflex in rats. Brain Res. 2005, 1058, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Whaley-Connell, A.; Pavey, B.S.; Chaudhary, K.; Saab, G.; Sowers, J.R. Renin-angiotensin-aldosterone system intervention in the cardiometabolic syndrome and cardio-renal protection. Ther. Adv. Cardiovasc. Dis. 2007, 1, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Collins, S. A heart–adipose tissue connection in the regulation of energy metabolism. Nat. Rev. Endocrinol. 2004, 10, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapleton, P.A.; James, M.E.; Goodwill, A.G.; Frisbee, J.C. Obesity and vascular dysfunction. Pathophysiology 2008, 15, 79–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccarelli, M.; Santulli, G.; Pascale, V.; Trimarco, B.; Iaccarino, G. Adrenergic receptors and metabolism: Role in development of cardiovascular disease. Front. Physiol. 2013, 4, 265. [Google Scholar] [CrossRef] [Green Version]
- Grassi, G.; Dell’Oro, R.; Facchini, A.; Trevano, F.Q.; Bolla, G.B.; Mancia, G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J. Hypertens. 2004, 22, 2363–2369. [Google Scholar] [CrossRef] [PubMed]
- Cabandugama, P.K.; Gardner, M.J.; Sowers, J.R. The Renin Angiotensin Aldosterone System in Obesity and Hypertension. Med Clin. North Am. 2017, 101, 129–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkbey, E.B.; McClelland, R.L.; Kronmal, R.A.; Burke, G.L.; Bild, D.E.; Tracy, R.P.; Arai, A.E.; Lima, J.A.C.; Bluemke, D.A. The Impact of Obesity on the Left Ventricle. JACC Cardiovasc. Imaging 2010, 3, 266–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuspidi, C.; Rescaldani, M.; Sala, C.; Grassi, G. Left-ventricular hypertrophy and obesity: A systematic review and meta-analysis of echocardiographic studies. J. Hypertens. 2014, 32, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Berwick, Z.C.; Dick, G.M.; Tune, J.D. Heart of the matter: Coronary dysfunction in metabolic syndrome. J. Mol. Cell. Cardiol. 2012, 52, 848–856. [Google Scholar] [CrossRef] [Green Version]
- Wong, N.D.; Nelson, J.C.; Granston, T.; Bertoni, A.G.; Blumenthal, R.S.; Carr, J.J.; Guerci, A.; Jacobs, D.R.; Kronmal, R.; Liu, K.; et al. Metabolic Syndrome, Diabetes, and Incidence and Progression of Coronary Calcium: The Multiethnic Study of Atherosclerosis Study. JACC Cardiovasc. Imaging 2012, 5, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Lau, D.C.W.; Dhillon, B.; Yan, H.; Szmitko, P.E.; Verma, S. Adipokines: Molecular links between obesity and atheroslcerosis. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H2031–H2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef] [Green Version]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. 1—Overview of polyphenols and their properties. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Vienna, Austria, 2018; pp. 3–44. [Google Scholar] [CrossRef]
- Wong, S.K.; Chin, K.-Y.; Suhaimi, F.H.; Fairus, A.; Ima-Nirwana, S. Animal models of metabolic syndrome: A review. Nutr. Metab. 2016, 13, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinert, M.; Clemmensen, C.; Hofmann, S.M.; Moore, C.C.; Renner, S.; Woods, S.C.; Huypens, P.; Beckers, J.; de Angelis, M.H.; Schürmann, A.; et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 2018, 14, 140–162. [Google Scholar] [CrossRef] [Green Version]
- Conn, P.M. Animal Models for the Study of Human Disease; Academic Press: Lubbock, TX, USA, 2017. [Google Scholar]
- Suckow, M.A.; Hankenson, F.C.; Wilson, R.P.; Foley, P.L. The Laboratory Rat; Academic Press: Lexington, KY, USA, 2019. [Google Scholar]
- Almatroodi, S.A.; Almatroudi, A.; Alsahli, M.A.; Rahman, A.H. Grapes and their Bioactive Compounds: Role in Health Management Through Modulating Various Biological Activities. Pharmacogn. J. 2020, 12, 1455–1462. [Google Scholar] [CrossRef]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Ferrières, J. The French paradox: Lessons for other countries. Heart 2004, 90, 107–111. [Google Scholar] [CrossRef]
- Obrenovich, M.; Siddiqui, B.; McCloskey, B.; Reddy, V.P. The Microbiota–Gut–Brain Axis Heart Shunt Part I: The French Paradox, Heart Disease and the Microbiota. Microorganisms 2020, 8, 490. [Google Scholar] [CrossRef] [Green Version]
- Ritz, M.-F.; Curin, Y.; Mendelowitsch, A.; Andriantsitohaina, R. Acute treatment with red wine polyphenols protects from ischemia-induced excitotoxicity, energy failure and oxidative stress in rats. Brain Res. 2008, 1239, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez, E.; Rodiño-Janeiro, B.K.; Jerez, M.; Ucieda-Somoza, R.; Núñez, M.J.; González-Juanatey, J.R. Procyanidins from grape pomace are suitable inhibitors of human endothelial NADPH oxidase. J. Cell. Biochem. 2012, 113, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-L.; Yi, L.; Jin, X.; Liang, X.-Y.; Zhou, Y.; Zhang, T.; Xie, Q.; Zhou, X.; Chang, H.; Fu, Y.-J.; et al. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 2013, 9, 2033–2045. [Google Scholar] [CrossRef] [PubMed]
- Agouni, A.; Lagrue-Lak-Hal, A.-H.; Mostefai, H.A.; Tesse, A.; Mulder, P.; Rouet, P.; Desmoulin, F.; Heymes, C.; Martínez, M.C.; Adriantsitohaina, R. Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa). PLoS ONE 2009, 4, e5557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agouni, A.; Mostefai, H.A.; Lagrue-Lak-Hal, A.-H.; Sladkova, M.; Rouet, P.; Desmoulin, F.; Pechanova, O.; Martínez, M.C.; Andriantsitohaina, R. Paradoxical effect of nonalcoholic red wine polyphenol extract, ProvinolsTM, in the regulation of cyclooxygenases in vessels from Zucker fatty rats (fa/fa). Oxidative Med. Cell. Longev. 2017, 2017, 8536910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehaber-Sierakowski, C.C.; Vieira-Frez, F.C.; Hermes-Uliana, C.; Martins, H.A.; Bossolani, G.D.P.; Lima, M.M.; Blegniski, P.; Guarnier, F.A.; Barcat, M.M.; Perles, J.V.C.M.; et al. Protective effects of quercetin-loaded microcapsules on the enteric nervous system of diabetic rats. Auton. Neurosci. 2021, 230, 102759. [Google Scholar] [CrossRef]
- Tan, Y.; Kim, J.; Cheng, J.; Ong, M.; Lao, W.-G.; Jin, X.-L.; Lin, Y.-G.; Xiao, L.; Zhu, X.-Q.; Qu, X.-Q. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats. World J. Gastroenterol. 2017, 23, 3805. [Google Scholar] [CrossRef]
- Kao, Y.H.; Hiipakka, R.A.; Liao, S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000, 141, 980–987. [Google Scholar] [CrossRef]
- Cheng, J.; Tan, Y.; Zhou, J.; Xiao, L.; Johnson, M.; Qu, X. Green tea polyphenols ameliorate metabolic abnormalities and insulin resistance by enhancing insulin signalling in skeletal muscle of Zucker fatty rats. Clin. Sci. 2020, 134, 1167–1180. [Google Scholar] [CrossRef]
- Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef] [PubMed]
- David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Li, L.J.; Li, G.W.; Xie, Y. Regulatory effects of glabridin and quercetin on energy metabolism of breast cancer cells. China J. Chin. Mater. Med. 2019, 44, 3786–3791. [Google Scholar] [CrossRef]
- Kim, G.T.; Lee, S.H.; Kim, J.I.; Kim, Y.M. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int. J. Mol. Med. 2014, 33, 863–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.H.; Lai, S.L.; Chen, W.S.; Hung, W.Y.; Chow, J.M.; Hsiao, M.; Chien, M.H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1746–1758. [Google Scholar] [CrossRef]
- Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiartherosclerotic effects of plant flavonoids. Biomed. Res. Int. 2014, 2014, 480258. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Chang, C.Y.; Lin, S.Y.; Wang, J.D.; Wu, C.C.; Chen, W.Y.; Chen, C.J. Quercetin protects against cerebral ischemia/reperfusion and oxygen glucose deprivation/reoxygenation neurotoxicity. J. Nutr. Biochem. 2020, 83, 108436. [Google Scholar] [CrossRef]
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016, 56, 21–38. [Google Scholar] [CrossRef]
- Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin Ameliorates Metabolic Syndrome and Improves the Inflammatory Status in Obese Zucker Rats. Obesity 2008, 16, 2081–2087. [Google Scholar] [CrossRef]
- Melmed, S.; Polonsky, K.S.; Larsen, P.R.; Kronenberg, H.M. Williams Textbook of Endocrinology E-Book; Elsevier Health Sciences: Philadelphia, PA, USA, 2015. [Google Scholar]
- Kowluru, R.A.; Mishra, M.; Kowluru, A.; Kumar, B. Hyperlipidemia and the development of diabetic retinopathy: Comparison between type 1 and type 2 animal models. Metabolism 2016, 65, 1570–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabó, K.; Énzsöly, A.; Dékány, B.; Szabó, A.; Hajdú, R.I.; Radovits, T.; Mátyás, C.; Oláh, A.; Laurik, L.L.; Somfai, G.M.; et al. Histological Evaluation of Diabetic Neurodegeneration in the Retina of Zucker Diabetic Fatty (ZDF) Rats. Sci. Rep. 2017, 7, 8891. [Google Scholar] [CrossRef] [PubMed]
- Zarfeshany, A.; Asgary, S.; Javanmard, S.H. Potent health effects of pomegranate. Adv. Biomed. Res. 2014, 3, 100. [Google Scholar] [CrossRef] [PubMed]
- Johanningsmeier, S.D.; Harris, G.K. Pomegranate as a functional food and nutraceutical source. Annu. Rev. Food Sci. Technol. 2011, 2, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.Z.-Y.; Zhu, C.; Kim, M.S.; Yamahara, J.; Li, Y. Pomegranate flower ameliorates fatty liver in an animal model of type 2 diabetes and obesity. J. Ethnopharmacol. 2009, 123, 280–287. [Google Scholar] [CrossRef]
- Huang, T.H.W.; Yang, Q.; Harada, M.; Li, G.Q.; Yamahara, J.; Roufogalis, B.D.; Li, Y. Pomegranate Flower Extract Diminishes Cardiac Fibrosis in Zucker Diabetic Fatty Rats: Modulation of Cardiac Endothelin-1 and Nuclear Factor-kappaB Pathways. J. Cardiovasc. Pharmacol. 2005, 46, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.H.W.; Peng, G.; Kota, B.P.; Li, G.Q.; Yamahara, J.; Roufogalis, B.D.; Li, Y. Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: Role of lowering circulating lipids. Br. J. Pharmacol. 2005, 145, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Campia, U.; Panza, J.A. Flavanol-rich cocoa: A promising new dietary intervention to reduce cardiovascular risk in type 2 diabetes? J. Am. Coll. Cardiol. 2008, 51, 2150–2152. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Cilleros, D.; López-Oliva, E.; Goya, L.; Martín, M.Á.; Ramos, S. Cocoa intake attenuates renal injury in Zucker Diabetic fatty rats by improving glucose homeostasis. Food Chem. Toxicol. 2019, 127, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Cordero-Herrera, I.; Martin, M.A.; Fernández-Millán, E.; Álvarez, C.; Goya, L.; Ramos, S. Cocoa and cocoa flavanol epicatechin improve hepatic lipid metabolism in in vivo and in vitro models. Role of PKCζ. J. Funct. Foods 2015, 17, 761–773. [Google Scholar] [CrossRef]
- Álvarez-Cilleros, D.; Ramos, S.; López-Oliva, M.E.; Escrivá, F.; Álvarez, C.; Fernández-Millán, E.; Martín, M.Á. Cocoa diet modulates gut microbiota composition and improves intestinal health in Zucker diabetic rats. Food Res. Int. 2020, 132, 109058. [Google Scholar] [CrossRef] [PubMed]
- Giovinazzo, G.; Ingrosso, I.; Paradiso, A.; De Gara, L.; Santino, A. Resveratrol biosynthesis: Plant metabolic engineering for nutritional improvement of food. Plant Foods Hum. Nutr. 2012, 67, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsu, P.; Murthy, B.; Akula, A. Cerebroprotective potential of resveratrol through anti-oxidant and anti-inflammatory mechanisms in rats. J. Neural Transm. 2013, 120, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Mokni, M.; Limam, F.; Elkahoui, S.; Amri, M.; Aouani, E. Strong cardioprotective effect of resveratrol, a red wine polyphenol, on isolated rat hearts after ischemia/reperfusion injury. Arch. Biochem. Biophys. 2007, 457, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.R.; Lokhandwala, M.F.; Banday, A.A. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur. J. Pharmacol. 2011, 667, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Thandapilly, S.J.; Wojciechowski, P.; Behbahani, J.; Louis, X.L.; Yu, L.; Juric, D.; Kopilas, M.A.; Anderson, H.D.; Netticadan, T. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am. J. Hypertens. 2010, 23, 192–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bomfim, G.H.S.; Musial, D.C.; Méndez-López, I.; Jurkiewicz, A.; Jurkiewicz, N.H.; Padín, J.F.; García, A.G. Chronic resveratrol consumption prevents hypertension development altering electrophysiological currents and Ca2+ signaling in chromaffin cells from SHR rats. Cell. Signal. 2020, 76, 109811. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Lozada, L.G.; Tapia, E.; Jimenez, A.; Bautista, P.; Cristobal, M.; Nepomuceno, T.; Soto, V.; Avila-Casado, C.; Nakagawa, T.; Johnson, R.J.; et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am. J. Physiol. Ren. Physiol. 2007, 292, F423–F429. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, A.A.; Díaz, G.H.; Barcelata, M.L.; Guerrero, O.A.; Ros, R.M.O. Effects of fish oil on hypertension, plasma lipids, and tumor necrosis factor-α in rats with sucrose-induced metabolic syndrome. J. Nutr. Biochem. 2004, 15, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Buettner, R.; Schölmerich, J.; Bollheimer, L.C. High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity 2007, 15, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Ghibaudi, L.; Cook, J.; Farley, C.; Van Heek, M.; Hwa, J.J. Fat intake affects adiposity, comorbidity factors, and energy metabolism of sprague-dawley rats. Obes. Res. 2002, 10, 956–963. [Google Scholar] [CrossRef]
- Ferris, H.A.; Kahn, C.R. New mechanisms of glucocorticoid-induced insulin resistance: Make no bones about it. J. Clin. Investig. 2012, 122, 3854–3857. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Chin, K.-Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. The relationship between metabolic syndrome and osteoporosis: A review. Nutrients 2016, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, P.; Pigera, S.; Premakumara, G.S.; Galappaththy, P.; Constantine, G.R.; Katulanda, P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): A systematic review. BMC Complementary Altern. Med. 2013, 13, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaprakasha, G.K.; Rao, L.J.M. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit. Rev. Food Sci. Nutr. 2011, 51, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Medagama, A.B. The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Nutr. J. 2015, 14, 108. [Google Scholar] [CrossRef] [Green Version]
- Sheng, X.; Zhang, Y.; Gong, Z.; Huang, C.; Zang, Y.Q. Improved insulin resistance and lipid metabolism by cinnamon extract through activation of peroxisome proliferator-activated receptors. PPAR Res. 2008, 2008, 581348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couturier, K.; Batandier, C.; Awada, M.; Hininger-Favier, I.; Canini, F.; Anderson, R.A.; Leverve, X.; Roussel, A.-M. Cinnamon improves insulin sensitivity and alters the body composition in an animal model of the metabolic syndrome. Arch. Biochem. Biophys. 2010, 501, 158–161. [Google Scholar] [CrossRef]
- Shalaby, M.A.; Saifan, H.Y. Some pharmacological effects of cinnamon and ginger herbs in obese diabetic rats. J. Intercult. Ethnopharmacol. 2014, 3, 144. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Hosseinzadeh, H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran. J. Basic Med Sci. 2016, 19, 1258. [Google Scholar]
- Wojcik, M.; Krawczyk, M.; Wozniak, L.A. Antidiabetic activity of curcumin: Insight Into its mechanisms of action. In Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome; Elsevier: Houston, TX, USA, 2018; pp. 385–401. [Google Scholar]
- Al-Saud, N.B.S. Impact of curcumin treatment on diabetic albino rats. Saudi J. Biol. Sci. 2020, 27, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Kabirifar, R.; Ghoreshi, Z.; Rezaifar, A.; Binesh, F.; Bamdad, K.; Moradi, A. Curcumin, quercetin and atorvastatin protected against the hepatic fibrosis by activating AMP-activated protein kinase. J. Funct. Foods 2018, 40, 341–348. [Google Scholar] [CrossRef]
- Alongi, M.; Anese, M. Re-thinking functional food development through a holistic approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
Strain | Mutation/Genetic Background | Metabolic Changes | Model | References |
---|---|---|---|---|
Zucker Fatty rats (ZF) | missense mutation on the leptin receptor gene (fa/fa) | 1. obesity 2. hypertension 3. hyperinsulinemia 4. insulin resistance 5. hypercholesterolemia 6. hypertriglyceridemia | obesity, type II diabetes, MetS | [51,52] |
Zucker Diabetic Fatty rats (ZDF) | non-functional leptin receptor (selective in-bread rat strain) | 1. obesity 2. hypertension 3. hyperinsulinemia 4. insulin resistance 5. hyperglycemia 6. hypercholesterolemia 7. hypertriglyceridemia | type I and II diabetes, MetS | [49,51,75,76,77] |
Spontaneously Hypertensive rats (SHR) | - | 1. hypertension 2. hyperinsulinemia 3. insulin resistance | hypertension, heart failure, renal dysfunction | [49,51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niewiadomska, J.; Gajek-Marecka, A.; Gajek, J.; Noszczyk-Nowak, A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. Biology 2022, 11, 559. https://doi.org/10.3390/biology11040559
Niewiadomska J, Gajek-Marecka A, Gajek J, Noszczyk-Nowak A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. Biology. 2022; 11(4):559. https://doi.org/10.3390/biology11040559
Chicago/Turabian StyleNiewiadomska, Joanna, Aleksandra Gajek-Marecka, Jacek Gajek, and Agnieszka Noszczyk-Nowak. 2022. "Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models" Biology 11, no. 4: 559. https://doi.org/10.3390/biology11040559
APA StyleNiewiadomska, J., Gajek-Marecka, A., Gajek, J., & Noszczyk-Nowak, A. (2022). Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. Biology, 11(4), 559. https://doi.org/10.3390/biology11040559