Responses of Fine Roots at Different Soil Depths to Different Thinning Intensities in a Secondary Forest in the Qinling Mountains, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Treatments
2.3. Soil, Litter and Vegetation Survey
2.4. Fine-Root Sampling
2.5. Chemical and Biochemical Analyses
2.6. Data Calculation and Analysis
3. Results
3.1. Stand and Soil Properties
3.2. Fine-Root Biomass, Necromass, and Total Mass of Different Diameter Classes
3.3. Fine-Root Production, Mortality and Turnover Rate in Different Diameter Classes
3.4. The Linkages between Fine-Root Characteristics and Stand and Soil Attributes
4. Discussion
4.1. Effects of Thinning on the Fine-Root Biomass, Production and Turnover Rate
4.2. Necromass and Mortality Changes following Thinning
4.3. Response of Deeper-Soil Fine-Root Characteristics to Thinning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, X.; Kang, F.; Han, H.; Liu, H.; Zhang, Y. Effect of thinning on partitioned soil respiration in a young Pinus tabulaeformis plantation during growing season. Agric. For. Meteorol. 2015, 214, 473–482. [Google Scholar] [CrossRef]
- Campbell, J.; Alberti, G.; Martin, J.; Law, B. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. For. Ecol. Manag. 2009, 257, 453–463. [Google Scholar] [CrossRef]
- Tian, D.-L.; Peng, Y.-Y.; Yan, W.-D.; Fang, X.; Kang, W.-X.; Wang, G.-J.; Chen, X.-Y. Effects of thinning and litter fall removal on fine root production and soil organic carbon content in Masson pine plantations. Pedosphere 2010, 20, 486–493. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.Y.; Chen, X.; Wang, J.; Chen, B.; Wang, D.; Guan, Q. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations. Appl. Soil Ecol. 2016, 107, 162–169. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, H.; Peng, D.; Liu, X.; Yang, F.; Li, Z.; Cheng, S. Thinning drives C:N:P stoichiometry and nutrient resorption in Larix principis-rupprechtii plantations in North China. For. Ecol. Manag. 2020, 462, 117984. [Google Scholar] [CrossRef]
- Kuehne, C.; Weiskittel, A.R.; Fraver, S.; Puettmann, K.J. Effects of thinning-induced changes in structural heterogeneity on growth, ingrowth, and mortality in secondary coastal Douglas-fir forests. Can. J. For. Res. 2015, 45, 1448–1461. [Google Scholar] [CrossRef] [Green Version]
- Jörgensen, K.; Granath, G.; Lindahl, B.D.; Strengbom, J. Forest management to increase carbon sequestration in boreal Pinus sylvestris forests. Plant Soil 2021, 466, 165–178. [Google Scholar] [CrossRef]
- Ding, Y.; Leppälammi-Kujansuu, J.; Helmisaari, H.-S. Fine root longevity and below-and aboveground litter production in a boreal Betula pendula forest. For. Ecol. Manag. 2019, 431, 17–25. [Google Scholar] [CrossRef]
- Zhou, W.; Guan, K.; Peng, B.; Tang, J.; Jin, Z.; Jiang, C.; Grant, R.; Mezbahuddin, S. Quantifying carbon budget, crop yields and their responses to environmental variability using the ecosys model for US Midwestern agroecosystems. Agric. For. Meteorol. 2021, 307, 108521. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.Y. Positive species mixture effects on fine root turnover and mortality in natural boreal forests. Soil Biol. Biochem. 2018, 121, 130–137. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, H.Y. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Crit. Rev. Plant Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Neumann, M.; Godbold, D.L.; Hirano, Y.; Finér, L. Improving models of fine root carbon stocks and fluxes in European forests. J. Ecol. 2020, 108, 496–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aussenac, G. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann. For. Sci. 2000, 57, 287–301. [Google Scholar] [CrossRef]
- Wang, D.; Olatunji, O.A.; Xiao, J. Thinning increased fine root production, biomass, turnover rate and understory vegetation yield in a Chinese fir plantation. For. Ecol. Manag. 2019, 440, 92–100. [Google Scholar] [CrossRef]
- Montagnoli, A.; Terzaghi, M.; Di Iorio, A.; Scippa, G.S.; Chiatante, D. Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines, Italy. Ecol. Res. 2012, 27, 1015–1025. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wang, N.; Cheng, R.; Xiao, W.; Yang, S.; Guo, Y. Short-term effects of low intensity thinning on the fine root dynamics of Pinus massoniana plantations in the three gorges reservoir area, China. Forests 2017, 8, 428. [Google Scholar] [CrossRef] [Green Version]
- Fukuzawa, K.; Shibata, H.; Takagi, K.; Nomura, M.; Kurima, N.; Fukazawa, T.; Satoh, F.; Sasa, K. Effects of clear-cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan. For. Ecol. Manag. 2006, 225, 257–261. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, W.; Wu, M.; Xue, Y.; Ma, L.; Zhou, J. Effect of aboveground intervention on fine root mass, production, and turnover rate in a Chinese cork oak (Quercus variabilis Blume) forest. Plant Soil 2013, 368, 201–214. [Google Scholar] [CrossRef]
- Liu, C.; Xiang, W.; Zou, L.; Lei, P.; Zeng, Y.; Ouyang, S.; Deng, X.; Fang, X.; Liu, Z.; Peng, C. Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant Soil 2019, 436, 347–364. [Google Scholar] [CrossRef]
- Kong, D.; Ma, C.; Zhang, Q.; Li, L.; Chen, X.; Zeng, H.; Guo, D. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 2014, 203, 863–872. [Google Scholar] [CrossRef]
- Hertel, D.; Strecker, T.; Müller-Haubold, H.; Leuschner, C. Fine root biomass and dynamics in beech forests across a precipitation gradient–is optimal resource partitioning theory applicable to water-limited mature trees? J. Ecol. 2013, 101, 1183–1200. [Google Scholar] [CrossRef]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmisaari, H.S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, N.; Cheng, R.; Xiao, W.; Yang, S.; Guo, Y.; Lei, L.; Zeng, L.; Wang, X. Characteristics of fine roots of Pinus massoniana in the Three Gorges Reservoir Area, China. Forests 2017, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.W.; Sang, W.G.; Wang, R.-Z. Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. For. Ecol. Manag. 2008, 255, 765–773. [Google Scholar] [CrossRef]
- Zobel, R.W.; Kinraide, T.B.; Baligar, V.C. Fine root diameters can change in response to changes in nutrient concentrations. Plant Soil 2007, 297, 243–254. [Google Scholar] [CrossRef]
- Montagnoli, A.; Di Iorio, A.; Terzaghi, M.; Trupiano, D.; Scippa, G.; Chiatante, D. Influence of soil temperature and water content on fine-root seasonal growth of European beech natural forest in Southern Alps, Italy. Eur. J. For. Res. 2014, 133, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Chen, H.Y. Global responses of fine root biomass and traits to plant species mixtures in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2021, 30, 289–304. [Google Scholar] [CrossRef]
- Lopez, B.C.; Sabate, S.; Gracia, C. Thinning effects on carbon allocation to fine roots in a Quercus ilex forest. Tree Physiol. 2003, 23, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- Coll, L.; Balandier, P.; Picon-Cochard, C.; Prévosto, B.; Curt, T. Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions. Ann. For. Sci. 2003, 60, 593–600. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Z.; Zhu, Q.; Fu, S.; Chen, H.Y. Rapid increases in fine root biomass and production following cessation of anthropogenic disturbances in degraded forests. Land Degrad. Dev. 2018, 29, 461–470. [Google Scholar] [CrossRef]
- Olesinski, J.; Lavigne, M.B.; Kershaw, J.A., Jr.; Krasowski, M.J. Fine-root dynamics change during stand development and in response to thinning in balsam fir (Abies balsamea L. Mill.) forests. For. Ecol. Manag. 2012, 286, 48–58. [Google Scholar] [CrossRef]
- Asaye, Z.; Zewdie, S. Fine root dynamics and soil carbon accretion under thinned and un-thinned Cupressus lusitanica stands in, Southern Ethiopia. Plant Soil 2013, 366, 261–271. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, J.; Wang, D. Response of multi-ecological component stoichiometry and tree nutrient resorption to medium-term whole-tree harvesting in secondary forests in the Qinling Mountains, China. For. Ecol. Manag. 2021, 498, 119573. [Google Scholar] [CrossRef]
- Delian, W. Studies on Runoff and Its Water Quality in the Forestry Watershed of Huoditang in Qingling Mountain. Master’s Thesis, Northwest Agriculture and Forestry University of Science and Technology, Xianyang, China, 2004. [Google Scholar]
- Yuan, J.; Cheng, F.; Zhu, X.; Li, J.; Zhang, S. Respiration of downed logs in pine and oak forests in the Qinling Mountains, China. Soil Biol. Biochem. 2018, 127, 1–9. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, J.; Zhao, X.; Chao, Z.; Wang, Y.; Zhang, X.; Wang, D. The linkages of plant, litter and soil C:N:P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. PeerJ 2020, 8, e9274. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, J.; Liu, L.; Han, L.; Wang, D. Coupling of different plant functional group, soil, and litter nutrients in a natural secondary mixed forest in the Qinling Mountains, China. Environ. Sci. Pollut. R. 2021, 28, 66272–66286. [Google Scholar] [CrossRef]
- Kaarakka, L.; Tamminen, P.; Saarsalmi, A.; Kukkola, M.; Helmisaari, H.-S.; Burton, A.J. Effects of repeated whole-tree harvesting on soil properties and tree growth in a Norway spruce (Picea abies (L.) Karst.) stand. For. Ecol. Manag. 2014, 313, 180–187. [Google Scholar] [CrossRef]
- Yan, T.; Zhu, J.; Yang, K.; Yu, L.; Zhang, J. Nutrient removal under different harvesting scenarios for larch plantations in northeast China: Implications for nutrient conservation and management. For. Ecol. Manag. 2017, 400, 150–158. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Hart, S.A.; Chen, H.Y. Fire, logging, and overstory affect understory abundance, diversity, and composition in boreal forest. Ecol. Monogr. 2008, 78, 123–140. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Simplifying the decision matrix for estimating fine root production by the sequential soil coring approach. Acta Oecologica 2013, 48, 54–61. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, X.; Guan, W.; Liao, B.; Chen, Y.; Li, M.; Zhong, C. Fine root functional group based estimates of fine root production and turnover rate in natural mangrove forests. Plant Soil 2017, 413, 83–95. [Google Scholar] [CrossRef]
- Brassard, B.W.; Chen, H.Y.; Cavard, X.; Laganière, J.; Reich, P.B.; Bergeron, Y.; Pare, D.; Yuan, Z. Tree species diversity increases fine root productivity through increased soil volume filling. J. Ecol. 2013, 101, 210–219. [Google Scholar] [CrossRef]
- De Vos, B.; Van Meirvenne, M.; Quataert, P.; Deckers, J.; Muys, B. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci. Soc. Am. J. 2005, 69, 500–510. [Google Scholar] [CrossRef]
- Brunner, I.; Bakker, M.R.; Björk, R.G.; Hirano, Y.; Lukac, M.; Aranda, X.; Børja, I.; Eldhuset, T.D.; Helmisaari, H.S.; Jourdan, C.; et al. Fine-root turnover rates of European forests revisited: An analysis of data from sequential coring and ingrowth cores. Plant Soil 2012, 362, 357–372. [Google Scholar] [CrossRef]
- De Boeck, P.; Bakker, M.; Zwitser, R.; Nivard, M.; Hofman, A.; Tuerlinckx, F.; Partchev, I. The estimation of item response models with the lmer function from the lme4 package in R. J. Stat. Softw. 2011, 39, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. R: A Language and Environment for Statstical Computing. Version 3.3.2. R. Foundation for Statistical Computing. 2017. Available online: http://www.R-project.org/ (accessed on 9 January 2022).
- Liao, Y.; Fan, H.; Wei, X.; Wu, J.; Duan, H.; Fu, X.; Liu, W.; Wang, H.; Zhan, X.; Tang, P. Competition increased fine root biomass in Chinese fir (Cunninghamia lanceolata) plantations in Subtropical China. For. Ecol. Manag. 2019, 435, 151–157. [Google Scholar] [CrossRef]
- Luiro, J.; Kukkola, M.; Saarsalmi, A.; Tamminen, P.; Helmisaari, H.-S. Logging residue removal after thinning in boreal forests: Long-term impact on the nutrient status of Norway spruce and Scots pine needles. Tree Physiol. 2010, 30, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Lechuga, V.; Carraro, V.; Viñegla, B.; Carreira, J.A.; Linares, J.C. Managing drought-sensitive forests under global change. Low competition enhances long-term growth and water uptake in Abies pinsapo. For. Ecol. Manag. 2017, 406, 72–82. [Google Scholar] [CrossRef]
- Noguchi, K.; Han, Q.; Araki, M.G.; Kawasaki, T.; Kaneko, S.; Takahashi, M.; Chiba, Y. Fine-root dynamics in a young hinoki cypress (Chamaecyparis obtusa) stand for 3 years following thinning. J. For. Res.-Jpn. 2011, 16, 284–291. [Google Scholar] [CrossRef]
- Eissenstat, D.; Wells, C.; Yanai, R.; Whitbeck, J. Building roots in a changing environment: Implications for root longevity. New Phytol. 2000, 147, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Eshel, A.; Beeckman, T. Plant Roots: The Hidden Half; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Schroeer, A.E.; Hendrick, R.L.; Harrington, T.B. Root, ground cover, and litterfall dynamics within canopy gaps in a slash pine (Pinus elliottii Engelm.) dominated forest. Ecoscience 1999, 6, 548–555. [Google Scholar] [CrossRef]
- McGuire, J.P.; Mitchell, R.J.; Moser, E.B.; Pecot, S.D.; Gjerstad, D.H.; Hedman, C.W. Gaps in a gappy forest: Plant resources, longleaf pine regeneration, and understory response to tree removal in longleaf pine savannas. Can. J. For. Res. 2001, 31, 765–778. [Google Scholar] [CrossRef]
- Juodvalkis, A.; Kairiukstis, L.; Vasiliauskas, R. Effects of thinning on growth of six tree species in north-temperate forests of Lithuania. Eur. J. For. Res. 2005, 124, 187–192. [Google Scholar] [CrossRef]
- Trentini, C.P.; Campanello, P.I.; Villagra, M.; Ritter, L.; Ares, A.; Goldstein, G. Thinning of loblolly pine plantations in subtropical Argentina: Impact on microclimate and understory vegetation. For. Ecol. Manag. 2017, 384, 236–247. [Google Scholar] [CrossRef]
- Boot, R.G. The significance of size and morphology of root systems for nutrient acquisition and competition. In Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants; Lambers, H., Cambridge, M.L., Konings, H., Pons, T.L., Eds.; SPB Academic Publishing: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Joslin, J.; Gaudinski, J.B.; Torn, M.S.; Riley, W.; Hanson, P.J. Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest. New Phytol. 2006, 172, 523–535. [Google Scholar] [CrossRef]
- Di Iorio, A.; Montagnoli, A.; Terzaghi, M.; Scippa, G.S.; Chiatante, D. Effect of tree density on root distribution in Fagus sylvatica stands: A semi-automatic digitising device approach to trench wall method. Trees 2013, 27, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Dong, L.; Mao, Z.; Li, Y. Fine root dynamics of trees and understorey vegetation in a chronosequence of Betula platyphylla stands. For. Ecol. Manag. 2015, 346, 1–9. [Google Scholar] [CrossRef]
- Jones, R.H.; Mitchell, R.J.; Stevens, G.N.; Pecot, S.D. Controls of fine root dynamics across a gradient of gap sizes in a pine woodland. Oecologia 2003, 134, 132–143. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.C.; Macdonald, S.E.; Quideau, S.A. Understory plant community composition is associated with fine-scale above-and below-ground resource heterogeneity in mature lodgepole pine (Pinus contorta) forests. PLoS ONE 2016, 11, e0151436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, W.; Xu, M.; Deng, J.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Response of forest growth to C: N: P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma 2019, 337, 280–289. [Google Scholar] [CrossRef]
- Hertel, D.; Harteveld, M.A.; Leuschner, C. Conversion of a tropical forest into agroforest alters the fine root-related carbon flux to the soil. Soil Biol. Biochem. 2009, 41, 481–490. [Google Scholar] [CrossRef]
- McKay Fletcher, D.M.; Ruiz, S.; Dias, T.; Petroselli, C.; Roose, T. Linking root structure to functionality: The impact of root system architecture on citrate-enhanced phosphate uptake. New Phytol. 2020, 227, 376–391. [Google Scholar] [CrossRef] [Green Version]
If | Fine-Root Production | Fine-Root Mortality |
---|---|---|
ΔL + ΔD ≥ 0 and ΔD ≥ 0 | ΔL + ΔD | ΔD |
ΔL ≥ 0 and ΔD ≤ 0 | ΔL | 0 |
ΔL ≤ 0 and ΔD ≤ 0 | 0 | |ΔL| |
Characteristic | Depth (cm) | CK | T1 | T2 | T3 | T4 | p |
---|---|---|---|---|---|---|---|
Tree | 0% | 15% | 30% | 40% | 60% | ||
Stem density (trees ha−1) | 1306 ± 158 a | 1006 ± 128 ab | 845 ± 148 b | 614 ± 83 b | 595 ± 161 b | <0.001 | |
DBH (cm) | 16.77 ± 1.07 | 18.41 ± 1.33 | 17.74 ± 1.13 | 17.06 ± 1.16 | 17.31 ± 0.74 | 0.35 | |
Tree height (m) | 14.03 ± 0.67 | 14.72 ± 0.97 | 13.8 ± 0.61 | 13.15 ± 0.63 | 12.59 ± 0.35 | 0.16 | |
Volume (m3 ha−1) | 250.5 ± 21.56 a | 240.08 ± 10.68 a | 167.33 ± 17.14 b | 117.42 ± 4.08 bc | 105.72 ± 16.87 c | <0.001 | |
Understory plants | |||||||
Shrub biomass (t ha−1) | 3.41 ± 0.06 c | 3.92 ± 0.23 bc | 4.45 ± 0.16 ab | 4.94 ± 0.21 ab | 4.97 ± 0.58 a | <0.01 | |
Herb biomass (t ha−1) | 0.62 ± 0.04 b | 0.79 ± 0.12 ab | 0.87 ± 0.13 ab | 1.02 ± 0.12 a | 1.02 ± 0.18 a | <0.001 | |
Litter biomass (t ha−1) | 3.6 ± 0.18 a | 2.93 ± 0.28 ab | 2.78 ± 0.31 b | 2.29 ± 0.27 bc | 1.9 ± 0.17 c | <0.001 | |
Shannon-Wiener–herb | 1.96 ± 0.05 b | 2.13 ± 0.08 ab | 2.28 ± 0.13 ab | 2.22 ± 0.13 ab | 2.39 ± 0.15 a | <0.05 | |
Shannon-Wiener–shrub | 1.84 ± 0.09 b | 1.91 ± 0.17 b | 2.25 ± 0.03 a | 2.01 ± 0.05 b | 2.19 ± 0.13 ab | <0.05 | |
Soil | |||||||
Water content (%) | 0–20 | 44.25 ± 3.08 | 36.01 ± 2.6 | 33.13 ± 3.61 | 44.25 ± 3.74 | 34.44 ± 1.5 | 0.051 |
20–40 | 33.22 ± 2.79 | 29.17 ± 1.42 | 30.58 ± 2.32 | 30.46 ± 1.65 | 27.48 ± 2.2 | 0.44 | |
40–60 | 29.04 ± 1.1 | 23.3 ± 1.13 | 25.9 ± 1.59 | 26.86 ± 1.56 | 28.41 ± 2.61 | 0.18 | |
Bulk density (g cm−3) | 0–20 | 1.1 ± 0.05 | 1.26 ± 0.05 | 1.29 ± 0.11 | 1.1 ± 0.05 | 1.31 ± 0.04 | 0.076 |
20–40 | 1.33 ± 0.05 | 1.41 ± 0.05 | 1.41 ± 0.05 | 1.4 ± 0.05 | 1.44 ± 0.06 | 0.63 | |
40–60 | 1.41 ± 0.05 | 1.56 ± 0.03 | 1.49 ± 0.05 | 1.48 ± 0.04 | 1.47 ± 0.07 | 0.36 | |
SOC (g kg−1) | 0–20 | 26.64 ± 5.08 a | 23.83 ± 3.18 a | 9.22 ± 0.47 b | 9.54 ± 1.59 b | 7.37 ± 0.55 b | <0.001 |
20–40 | 14.47 ± 1.05 a | 15.82 ± 1.05 a | 7.65 ± 0.47 b | 5.53 ± 0.67 b | 5.76 ± 0.45 b | <0.001 | |
40–60 | 13.34 ± 0.78 a | 8.75 ± 1.15 b | 5.08 ± 0.52 c | 4.48 ± 0.37 c | 3.77 ± 0.2 c | <0.001 | |
AN (mg kg−1) | 0–20 | 35.56 ± 2.65 a | 29.37 ± 3.93 a | 10.07 ± 0.98 b | 9.14 ± 0.42 b | 7.96 ± 0.4 b | <0.001 |
20–40 | 16.64 ± 1.58 a | 16.01 ± 1.38 a | 7.97 ± 0.14 b | 6.95 ± 0.6 b | 6.37 ± 0.18 b | <0.001 | |
40–60 | 9.37 ± 1.33 a | 7.59 ± 0.94 ab | 7.19 ± 0.32 ab | 5.52 ± 0.36 bc | 4.95 ± 0.12 c | <0.01 | |
AP (mg kg−1) | 0–20 | 4.38 ± 0.74 a | 3.58 ± 0.39 ab | 3.15 ± 0.41 ab | 1.84 ± 0.28 b | 2.16 ± 0.3 b | <0.01 |
20–40 | 2.46 ± 0.29 ab | 3.15 ± 0.54 a | 1.95 ± 0.33 ab | 1.36 ± 0.16 b | 1.18 ± 0.18 b | <0.01 | |
40–60 | 1.86 ± 0.24 a | 1.78 ± 0.08 a | 1.12 ± 0.06 b | 0.73 ± 0.04 c | 0.71 ± 0.1 c | <0.001 | |
AK (mg kg−1) | 0–20 | 156.19 ± 11.78 ab | 185.2 ± 7.26 a | 134.78 ± 12.64 b | 146.29 ± 5.87 ab | 110.81 ± 12.08 b | <0.01 |
20–40 | 110.49 ± 6.98 a | 97.33 ± 9.32 ab | 101.85 ± 6.63 ab | 80.37 ± 8.67 ab | 77.15 ± 7.71 b | <0.05 | |
40–60 | 91.69 ± 12.45 a | 96.3 ± 11.96 a | 45.27 ± 5.39 b | 42.49 ± 6.26 b | 43.88 ± 4.38 b | <0.001 | |
pH | 0–20 | 6.29 ± 0.14 | 6.14 ± 0.11 | 6.38 ± 0.08 | 6.42 ± 0.14 | 6.6 ± 0.07 | 0.11 |
20–40 | 5.99 ± 0.18 | 6.02 ± 0.09 | 6.07 ± 0.17 | 6.28 ± 0.08 | 6.37 ± 0.04 | 0.18 | |
40–60 | 5.75 ± 0.09 b | 6.11 ± 0.05 a | 6.1 ± 0.09 a | 6.21 ± 0.07 a | 6.37 ± 0.08 a | <0.05 |
Characteristic | df | Source | <0.5 mm | 0.5–1 mm | 1–2 mm | <2 mm |
---|---|---|---|---|---|---|
Entire soil profile | ||||||
Biomass (g m−2) | 4 | T | 10.91 ** | 4.42 * | 9.01 ** | 2.11 |
Necromass (g m−2) | 4 | T | 2.34 | 58 ** | 11.11 ** | 25.31 ** |
Total mass (g m−2) | 4 | T | 10.62 ** | 2.33 | 4.15 * | 2.33 |
Depth-specific response | ||||||
Biomass (g m−2) | 4 | T | 19.05 ** | 11.75 ** | 16.57 ** | 12.15 ** |
2 | D | 1620 ** | 894 ** | 1621 ** | 3488 ** | |
8 | T × D | 9.12 ** | 6.44 ** | 6.91 ** | 12.58 ** | |
Necromass (g m−2) | 4 | T | 6.58 ** | 4.35 ** | 10.82 ** | 13.57 ** |
2 | D | 17.74 ** | 57 ** | 431 ** | 580 ** | |
8 | T × D | 1.46 | 2.17 * | 6.64 ** | 8.03 ** | |
Total mass (g m−2) | 4 | T | 17 ** | 6.15 ** | 9.93 ** | 8.85 ** |
2 | D | 1558 ** | 1074 ** | 2201 ** | 4109 ** | |
8 | T × D | 8.49 ** | 7.9 ** | 9.30 ** | 13.56 ** |
Characteristic | Diameter(mm) | 0–20 cm | 20–40 cm | 40–60 cm |
---|---|---|---|---|
Biomass (%) | <0.05 | 21.44 ± 6.75 | 32.92 ± 8.26 | 42.23 ± 10.18 |
0.5–1 | 9.05 ± 2.54 | 38.02 ± 8.54 | 14.39 ± 7.43 | |
1–2 | 15.14 ± 4.88 | 17.68 ± 5.01 | 42.51 ± 4.39 | |
Necromass (%) | <0.05 | 36.17 ± 13.27 | NA | 76.42 ± 25.86 |
0.5–1 | 16.51 ± 5.91 | 27.23 ± 19.99 | 33.95 ± 11.6 | |
1–2 | 20 ± 10.36 | 46.4 ± 12.96 | 30.63 ± 7.89 | |
Total mass (%) | <0.05 | 21.35 ± 6.66 | 32.38 ± 7.95 | 41.23 ± 9.84 |
0.5–1 | 7.45 ± 2.72 | 33.96 ± 7.4 | 15.06 ± 6.39 | |
1–2 | 10.01 ± 1.74 | 17.34 ± 3.07 | 41.08 ± 3.01 | |
Production (%) | <0.05 | 40.04 ± 14.25 | 19.74 ± 4.09 | 62.29 ± 9.94 |
0.5–1 | 19.22 ± 5.27 | 16.52 ± 4.95 | 23.83 ± 10.96 | |
1–2 | 20.62 ± 6.28 | 25.19 ± 10.41 | 57.37 ± 8.42 | |
Mortality (%) | <0.05 | 39.83 ± 14.89 | 46.03 ± 17.65 | 57.21 ± 6.48 |
0.5–1 | 36.03 ± 9.42 | 42.48 ± 7.92 | 37.38 ± 5.89 | |
1–2 | 36.03 ± 6.28 | 55.04 ± 11.02 | 62.4 ± 1 | |
Turnover rate (%) | <0.05 | 48.21 ± 8.83 | 29.93 ± 11.18 | 52.15 ± 8.83 |
0.5–1 | 32.98 ± 6.62 | 59.15 ± 27.89 | 33.92 ± 9.27 | |
1–2 | 19.82 ± 5.21 | 21.07 ± 9.96 | 33.33 ± 9.13 |
Characteristic | df | Source | <0.5 mm | 0.5–1 mm | 1–2 mm | <2 mm |
---|---|---|---|---|---|---|
Entire soil profile | ||||||
Production (g m−2) | 4 | T | 5.7 ** | 0.39 | 1.5 | 0.75 |
Mortality (g m−2) | 4 | T | 1.32 | 5.27 ** | 2.2 | 2.23 |
Turnover (year−1) | 4 | T | 3.27 * | 0.77 | 0.63 | 0.63 |
Depth-specific response | ||||||
Production (g m−2) | 4 | T | 2.11 | 0.52 | 2.12 | 2.52 |
2 | D | 126.65 ** | 0.53 | 40.43 ** | 153.64 ** | |
8 | T × D | 5.49 ** | 1.05 | 1.94 | 2.96 * | |
Mortality (g m−2) | 4 | T | 1.25 | 1.52 | 1.62 | 1.23 |
2 | D | 0.7 | 47.3 ** | 125.66 ** | 123.36 ** | |
8 | T × D | 0.82 | 2.23 * | 6.11 ** | 2.36 * | |
Turnover (year−1) | 4 | T | 1.5 | 1 | 0.66 | 1.93 |
2 | D | 2.97 | 4.94 * | 1.54 | 8.34 ** | |
8 | T × D | 2.63 * | 1.26 | 2 | 1.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Tian, J.; Yang, H.; Zhang, K.; Wang, D. Responses of Fine Roots at Different Soil Depths to Different Thinning Intensities in a Secondary Forest in the Qinling Mountains, China. Biology 2022, 11, 351. https://doi.org/10.3390/biology11030351
Pang Y, Tian J, Yang H, Zhang K, Wang D. Responses of Fine Roots at Different Soil Depths to Different Thinning Intensities in a Secondary Forest in the Qinling Mountains, China. Biology. 2022; 11(3):351. https://doi.org/10.3390/biology11030351
Chicago/Turabian StylePang, Yue, Jing Tian, Hang Yang, Kai Zhang, and Dexiang Wang. 2022. "Responses of Fine Roots at Different Soil Depths to Different Thinning Intensities in a Secondary Forest in the Qinling Mountains, China" Biology 11, no. 3: 351. https://doi.org/10.3390/biology11030351
APA StylePang, Y., Tian, J., Yang, H., Zhang, K., & Wang, D. (2022). Responses of Fine Roots at Different Soil Depths to Different Thinning Intensities in a Secondary Forest in the Qinling Mountains, China. Biology, 11(3), 351. https://doi.org/10.3390/biology11030351