Assessment of the Functional Form of the Relationship between Balance Control and Physical Activity Regarding Demographic, Anthropometrical, and Eye Impairment Explanatory Covariates in 9- to 11-Year-Old Children: Results of Polynomial and Cluster Analyses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Power Calculations
2.2. Participants
2.2.1. Biological Age—Age at Peak Height Velocity (APHV)
2.2.2. Balance Task
2.2.3. Physical Activity
2.3. Strategy of Analysis
- (1)
- The balance control variable (OSI—dependent variables, DVs) was regressed on the physical activity synthetic index (PASI—independent variables, IVs). Three separate regression functions were calculated: PASI, PASI2, and PASI3. The models were used to define the functional relationships between the volume of PA and balance control.
- (2)
- The peak or minimum–maximum values were indicated for best-fitted models (if the best-fitted model was a polynomial function).
- (3)
- Classification of the participants based on OSI and PA results was conducted with the hierarchical Ward-clustering method and Euclidean distances.
- (4)
- To explain cluster membership, demographic, anthropometric, and eyesight impairment variables were employed.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodway, J.D.; Ozmun, J.C.; Gallahue, D.L. Understanding Motor Development: Infants, Children, Adolescents, Adults; Jones & Bartlett Learning: Burlington, MA, USA, 2019. [Google Scholar]
- Granacher, U.; Muehlbauer, T.; Gollhofer, A.; Kressig, R.W.; Zahner, L. An intergenerational approach in the promotion of balance and strength for fall prevention–a mini-review. Gerontology 2011, 57, 304–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickle, K.J.; Munro, B.J.; Steele, J.R. Gender and age affect balance performance in primary school-aged children. J. Sci. Med. Sport 2011, 14, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Wrisley, D.M.; Frank, J. The balance evaluation systems test (BESTest) to differentiate balance deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef]
- Assaiante, C.; Amblard, B. An ontogenetic model for the sensorimotor organization of balance control in humans. Hum. Mov. Sci. 1995, 14, 13–43. [Google Scholar] [CrossRef]
- Veldman, S.L.; Paw, C.A.; Mai, J.M.; Altenburg, T.M. Physical activity and prospective associations with indicators of health and development in children aged< 5 years: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 1–11. [Google Scholar]
- Jones, D.; Innerd, A.; Giles, E.L.; Azevedo, L.B. Association between fundamental motor skills and physical activity in the early years: A systematic review and meta-analysis. J. Sport Health Sci. 2020, 9, 542–552. [Google Scholar] [CrossRef]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M.; Okely, A.D. Fundamental movement skills in children and adolescents. Sports Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [Green Version]
- Holfelder, B.; Schott, N. Relationship of fundamental movement skills and physical activity in children and adolescents: A systematic review. Psychol. Sport Exerc. 2014, 15, 382–391. [Google Scholar] [CrossRef]
- Tricard, D.; Marillet, S.; Ingrand, P.; Bullimore, M.A.; Bourne, R.R.; Leveziel, N. Progression of myopia in children and teenagers: A nationwide longitudinal study. Br. J. Ophthalmol. 2022, 106, 1104–1109. [Google Scholar] [CrossRef]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.; Resnikoff, S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Harrington, S.C.; Stack, J.; O’Dwyer, V. Risk factors associated with myopia in schoolchildren in Ireland. Br. J. Ophthalmol. 2019, 103, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Tideman, J.W.L.; Polling, J.R.; Hofman, A.; Jaddoe, V.W.; Mackenbach, J.P.; Klaver, C.C. Environmental factors explain socioeconomic prevalence differences in myopia in 6-year-old children. Br. J. Ophthalmol. 2018, 102, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Lanca, C.; Saw, S.M. The association between digital screen time and myopia: A systematic review. Ophthalmic Physiol. Opt. 2020, 40, 216–229. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Xiang, F.; Zeng, Y.; Mai, J.; Chen, Q.; Zhang, J.; Smith, W.; Rose, K.; Morgan, I.G. Effect of time spent outdoors at school on the development of myopia among children in China: A randomized clinical trial. JAMA 2015, 314, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-C.; Chen, C.-T.; Lin, K.-K.; Sun, C.-C.; Kuo, C.-N.; Huang, H.-M.; Poon, Y.-C.; Yang, M.-L.; Chen, C.-Y.; Huang, J.-C.; et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology 2018, 125, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- French, A.N.; Ashby, R.S.; Morgan, I.G.; Rose, K.A. Time outdoors and the prevention of myopia. Exp. Eye Res. 2013, 114, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Sankaridurg, P.; Naduvilath, T.; Zang, J.; Zou, H.; Zhu, J.; Lv, M.; He, X.; Xu, X. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmol. 2017, 95, 551–566. [Google Scholar] [CrossRef] [Green Version]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41 (Suppl. S3), S197–S239. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, J.C.; Reacher, M.H.; Keogh, R.H.; Khawaja, A.P.; Mackey, D.A.; Foster, P.J. The association between time spent outdoors and myopia in children and adolescents: A systematic review and meta-analysis. Ophthalmology 2012, 119, 2141–2151. [Google Scholar] [CrossRef]
- Deere, K.; Williams, C.; Leary, S.; Mattocks, C.; Ness, A.; Blair, S.N.; Riddoch, C. Myopia and later physical activity in adolescence: A prospective study. Br. J. Sports Med. 2009, 43, 542–544. [Google Scholar] [CrossRef] [PubMed]
- Guggenheim, J.A.; Northstone, K.; McMahon, G.; Ness, A.R.; Deere, K.; Mattocks, C.; Pourcain, B.S.; Williams, C. Time outdoors and physical activity as predictors of incident myopia in childhood: A prospective cohort study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2856–2865. [Google Scholar] [CrossRef] [PubMed]
- Kleinstein, R.N.; Jones, L.A.; Hullett, S.; Kwon, S.; Lee, R.J.; Friedman, N.E.; Manny, R.E.; Mutti, D.O.; Yu, J.A.; Zadnik, K. Refractive error and ethnicity in children. Arch. Ophthalmol. 2003, 121, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Khader, Y.S.; Batayha, W.Q.; Abdul Aziz, S.M.; Al Shiekh Khalil, M.I. Prevalence and risk indicators of myopia among schoolchildren in Amman, Jordan. EMHJ-East. Mediterr. Health J. 2006, 12, 434–439. [Google Scholar]
- Modrzejewska, M.; Domaradzki, J.; Jedziniak, W.; Florkiewicz, B.; Zwierko, T. Does Physical Activity Moderate the Relationship between Myopia and Functional Status in Children 9–11 Years of Age? J. Clin. Med. 2022, 11, 5672. [Google Scholar] [CrossRef]
- Haarman, A.E.; Enthoven, C.A.; Tideman, J.W.L.; Tedja, M.S.; Verhoeven, V.J.; Klaver, C.C. The complications of myopia: A review and meta-analysis. Investig. Ophthalmol. Vis. Sci. 2020, 61, 49. [Google Scholar] [CrossRef]
- McDonald, J.H. Handbook of Biological Statistics; Sparky House Publishing: Baltimore, MD, USA, 2014. [Google Scholar]
- Osiński, W. Multidirectional Relationships of Motor Skills and Morphological Parameters; Monographies 261; AWF: Poznań, Poland, 1988. [Google Scholar]
- Livshits, G.; Cohen, Z.; Otremski, I. Relationship between physical growth and motor development in infancy and early childhood: Multivariate analysis. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 1993, 5, 481–489. [Google Scholar] [CrossRef]
- Lampl, M.; Thompson, A.L. Growth chart curves do not describe individual growth biology. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2007, 19, 643–653. [Google Scholar] [CrossRef]
- Adolph, K.E.; Hoch, J.E. Motor Development: Embodied, Embedded, Enculturated, and Enabling. Annu. Rev. Psychol. 2019, 70, 141–164. [Google Scholar] [CrossRef]
- Almqvist, L. Patterns of engagement in young children with and without developmental delay. J. Policy Pract. Intellect. Disabil. 2006, 3, 65–75. [Google Scholar] [CrossRef]
- King, G.; Petrenchik, T.; Dewit, D.; McDougall, J.; Hurley, P.; Law, M. Out-of-school time activity participation profiles of children with physical disabilities: A cluster analysis. Child Care Health Dev. 2010, 36, 726–741. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Prochaska, J.J.; Taylor, W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000, 32, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Van Der Horst, K.; Paw, M.J.; Twisk, J.W.; Van Mechelen, W. A brief review on correlates of physical activity and sedentariness in youth. Med. Sci. Sport. Exerc. 2007, 39, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Klasson-Heggebø, L.; Anderssen, S.A. Gender and age differences in relation to the recommendations of physical activity among Norwegian children and youth. Scand. J. Med. Sci. Sports 2003, 13, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Nader, P.R.; Bradley, R.H.; Houts, R.M.; McRitchie, S.L.; O’Brien, M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA 2008, 300, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Verloigne, M.; Loyen, A.; Van Hecke, L.; Lakerveld, J.; Hendriksen, I.; De Bourdheaudhuij, I.; Deforche, B.; Donnelly, A.; Ekelund, U.; Brug, J.; et al. Variation in population levels of sedentary time in European children and adolescents according to cross-European studies: A systematic literature review within DEDIPAC. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 1–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahti, A.; Rosengren, B.E.; Nilsson, J.Å.; Peterson, T.; Karlsson, M.K. Age, gender and family-related factors were the most important socio-ecological associations with physical activity in children with a mean age of eight. Acta Paediatr. 2020, 109, 853–854. [Google Scholar] [CrossRef]
- Sherar, L.B.; Esliger, D.W.; Baxter-Jones, A.D.; Tremblay, M.S. Age and gender differences in youth physical activity: Does physical maturity matter? Med. Sci. Sports Exerc. 2007, 39, 830. [Google Scholar] [CrossRef]
- Thompson, A.M.; Baxter-Jones, A.D.; Mirwald, R.L.; Bailey, D.A. Comparison of physical activity in male and female children: Does maturation matter? Med. Sci. Sports Exerc. 2003, 35, 1684–1690. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.; Cameron, N.; Brasher, P.M. Enhancing a somatic maturity prediction model. Med. Sci. Sport. Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthro-pometric measurements. Med. Sci. Exerc. Sport. 2002, 34, 689–994. [Google Scholar]
- Arnold, B.; Schmitz, R. Examination of balance measures produced by the Biodex Stability System. J. Athl. Train. 1998, 33, 323–327. [Google Scholar] [PubMed]
- Arifin, N.; Abu Osman, N.A.; Wan Abas, W.A. Intrarater test-retest reliability of static and dynamic stability indexes measurement using the Biodex Stability System during unilateral stance. J. Appl. Biomech. 2014, 30, 300–304. [Google Scholar] [CrossRef]
- Fijałkowska, A.; Dzielska, A.; Mazur, J.; Korzycka, M.; Breda, J.; Oblacińska, A. Childhood Obesity Surveillance Initiative (COSI) in Poland: Implementation of two rounds of the study in the context of international methodological assumptions. J. Mother Child 2020, 24, 2–12. [Google Scholar]
- Holmes, S.H.; Huber, W. Modern Statistics for Modern Biology; Cambridge University Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Everitt, B.; Landau, S.; Leese, M. Cluster Analysis: A Hodder Arnold Publication; Willey: London, UK, 2001. [Google Scholar]
- Romesburg, C. Cluster Analysis for Researchers; Lulu Press: Morrisville, NC, USA, 2004. [Google Scholar]
- Kim, S.Y.; Moon, B.Y.; Cho, H.G. Body balance under ametropic conditions induced by spherical lenses in an upright position. J. Phys. Ther. Sci. 2015, 27, 615–618. [Google Scholar] [CrossRef] [Green Version]
- Paulus, W.; Straube, A.; Quintern, J.; Brandt, T. Visual postural performance in ametropia and with optical distortion produced by bifocals and multifocals. Acta Oto-Laryngol. 1989, 108, 243–246. [Google Scholar] [CrossRef]
- Kiefer, A.W.; Armitano-Lago, C.N.; Cone, B.L.; Bonnette, S.; Rhea, C.K.; Cummins-Sebree, S.; Riley, M.A. Postural control development from late childhood through young adulthood. Gait Posture 2021, 86, 169–173. [Google Scholar] [CrossRef]
- Rinaldi, N.M.; Polastri, P.F.; Barela, J.A. Age-related changes in postural control sensory reweighting. Neurosci. Lett. 2009, 467, 225–229. [Google Scholar] [CrossRef]
- Sundermier, L.; Woollacott, M.; Roncesvalles, N.; Jensen, J. The development of balance control in children: Comparisons of EMG and kinetic variables and chronological and developmental groupings. Exp. Brain Res. 2001, 136, 340–350. [Google Scholar] [CrossRef]
- Verbecque, E.; Vereeck, L.; Hallemans, A. Postural sway in children: A literature review. Gait Posture 2016, 49, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Kolic, J.; O’Brien, K.; Bowles, K.A.; Iles, R.; Williams, C.M. Understanding the impact of age, gender, height and body mass index on children’s balance. Acta Paediatr. 2020, 109, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.; Grigorenko, A.; Thorstensson, A. Balance control: Sex and age differences in 9-to 16-year-olds. Dev. Med. Child Neurol. 2005, 47, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Woollacott, M.H.; Shumway-Cook, A. Changes in posture control across the life span—a systems approach. Phys. Ther. 1990, 70, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Riach, C.L.; Starkes, J.L. Stability limits of quiet standing postural control in children and adults. Gait Posture 1993, 1, 105–111. [Google Scholar] [CrossRef]
- O’Donoghue, L.; Kapetanankis, V.V.; McClelland, J.F.; Logan, N.S.; Owen, C.G.; Saunders, K.J.; Rudnicka, A.R. Risk factors for childhood myopia: Findings from the NICER study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1524–1530. [Google Scholar] [CrossRef]
- Ho, C.L.; Wu, W.F.; Liou, Y.M. Dose–response relationship of outdoor exposure and myopia indicators: A systematic review and meta-analysis of various research methods. Int. J. Environ. Res. Public Health 2019, 16, 2595. [Google Scholar] [CrossRef] [Green Version]
- Mann, K.D.; Howe, L.D.; Basterfield, L.; Parkinson, K.N.; Pearce, M.S.; Reilly, J.K.; Adamson, A.J.; Reilly, J.J.; Janssen, X. Longitudinal study of the associations between change in sedentary behavior and change in adiposity during childhood and adolescence: Gateshead Millennium Study. Int. J. Obes. 2017, 41, 1042–1047. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Connor Gorber, S. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Jago, R.; Salway, R.; Emm-Collison, L.; Sebire, S.J.; Thompson, J.L.; Lawlor, D.A. Association of BMI category with change in children’s physical activity between ages 6 and 11 years: A longitudinal study. Int. J. Obes. 2020, 44, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Bataweel, E.A.; Ibrahim, A.I. Balance and musculoskeletal flexibility in children with obesity: A cross-sectional study. Ann. Saudi Med. 2020, 40, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Del Porto, H.; Pechak, C.; Smith, D.; Reed-Jones, R. Biomechanical effects of obesity on balance. Int. J. Exerc. Sci. 2012, 5, 301–320. [Google Scholar]
- Zipori, A.B.; Colpa, L.; Wong, A.; Cushing, S.L.; Gordon, K.A. Postural stability and visual impairment: Assessing balance in children with strabismus and amblyopia. PLoS ONE 2018, 13, e0205857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brin, T.A.; Xu, Z.; Zhou, Y.; Feng, L.; Li, J.; Thompson, B. Amblyopia is associated with impaired balance in 3-6-year-old children in China. Front. Neurosci. 2022, 16, 993826. [Google Scholar] [CrossRef] [PubMed]
Parameters | Myopic Children | Non-Myopic Children | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Age (years) | 10.14 | 1.24 | 10.54 | 1.36 |
Age at peak height velocity (years) | 12.17 | 0.60 | 11.93 | 0.57 |
Height (cm) | 139.94 | 6.39 | 139.30 | 5.48 |
Body mass (kg) | 36.15 | 8.06 | 31.21 | 4.57 |
Body Mass Index (kg/m2) | 18.33 | 3.28 | 16.02 | 1.59 |
Overall Stability Index (°) | 2.11 | 1.04 | 0.98 | 0.54 |
Physical Activity Synthetic Index (pts) | 0.421 | 0.07 | 0.475 | 0.09 |
Distance visual acuity (RE) | 0.86 | 0.24 | 1.00 | 0.04 |
Distance visual acuity (LE) | 0.91 | 0.21 | 1.00 | 0.03 |
Visual acuity (near) | 0.50 | 0.01 | 0.50 | 0.01 |
Spectacle correction (RE) (D) | 0.97 | 0.10 | 1.00 | 0.00 |
Spectacle correction (LE) (D) | 1.00 | 0.03 | 1.00 | 0.00 |
Spectacle correction (mean of both eyes) (D) | 0.98 | 0.51 | 1.00 | 0.00 |
Spherical equivalent (RE) (D) | −2.08 | 1.38 | 0.17 | 0.11 |
Spherical equivalent (LE) (D) | −2.14 | 1.74 | 0.23 | 0.05 |
Spherical equivalent (mean of both eyes) (D) | −2.16 | 1.51 | 0.05 | 0.27 |
Spherical equivalent before the cycloplegia (RE) (D) | −1.89 | 1.37 | 0.16 | 0.22 |
Spherical equivalent before the cycloplegia (LE) (D) | −1.97 | 1.71 | 0.12 | 0.13 |
Spherical equivalent before the cycloplegia (mean of both eyes) (D) | −1.93 | 1.44 | 0.14 | 0.17 |
Statistic | Function | ||
---|---|---|---|
F1 | F2 | F3 | |
PA | −3.40 * | −7.27 | 21.15 |
PA2 | 4.13 * | −57.63 | |
PA3 | 43.02 | ||
Constant | 3.07 * | 3.94 * | −0.247 |
R2 | 0.080 * | 0.092 * | 0.069 * |
Variable | 1 | 2 | 3 | 4 | p | |
---|---|---|---|---|---|---|
Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | |||
CA | 9.24 (8.99–9.49) | 9.36 (9.13–9.59) | 9.43 (9.18–9.68) | 9.51 (9.25–9.76) | 0.516 | |
APHV | 12.05 (11.82–12.29) | 11.91 (11.69–12.12) | 12.21 (11.98–12.44) | 12.05 (11.80–12.29) | 0.308 | |
BMI | 15.50 (14.47–16.52) | 16.93 (15.99–17.86) | 17.40 (16.39–18.40) | 18.95 (17.90–19.99) | <0.001 * | |
sex | boys | 11 | 10 | 15 | 11 | 0.335 |
girls | 14 | 20 | 11 | 13 | ||
myopia | yes | 5 | 7 | 18 | 22 | <0.001 * |
no | 20 | 23 | 8 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, J.; Modrzejewska, M.; Koźlenia, D.; Zwierko, T. Assessment of the Functional Form of the Relationship between Balance Control and Physical Activity Regarding Demographic, Anthropometrical, and Eye Impairment Explanatory Covariates in 9- to 11-Year-Old Children: Results of Polynomial and Cluster Analyses. Biology 2022, 11, 1663. https://doi.org/10.3390/biology11111663
Domaradzki J, Modrzejewska M, Koźlenia D, Zwierko T. Assessment of the Functional Form of the Relationship between Balance Control and Physical Activity Regarding Demographic, Anthropometrical, and Eye Impairment Explanatory Covariates in 9- to 11-Year-Old Children: Results of Polynomial and Cluster Analyses. Biology. 2022; 11(11):1663. https://doi.org/10.3390/biology11111663
Chicago/Turabian StyleDomaradzki, Jarosław, Monika Modrzejewska, Dawid Koźlenia, and Teresa Zwierko. 2022. "Assessment of the Functional Form of the Relationship between Balance Control and Physical Activity Regarding Demographic, Anthropometrical, and Eye Impairment Explanatory Covariates in 9- to 11-Year-Old Children: Results of Polynomial and Cluster Analyses" Biology 11, no. 11: 1663. https://doi.org/10.3390/biology11111663
APA StyleDomaradzki, J., Modrzejewska, M., Koźlenia, D., & Zwierko, T. (2022). Assessment of the Functional Form of the Relationship between Balance Control and Physical Activity Regarding Demographic, Anthropometrical, and Eye Impairment Explanatory Covariates in 9- to 11-Year-Old Children: Results of Polynomial and Cluster Analyses. Biology, 11(11), 1663. https://doi.org/10.3390/biology11111663