Applications of Ulva Biomass and Strategies to Improve Its Yield and Composition: A Perspective for Ulva Aquaculture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Ulva Biomass Composition and Its Potential Applications
3. Strategies to Improve Ulva Biomass Yield and Composition
3.1. Environmental Conditions, a Focus on Salinity
3.2. Microbiome
3.3. Natural Variation within the Genus Ulva spp.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wichard, T.; Charrier, B.; Mineur, F.; Bothwell, J.H.; De Clerck, O.; Coates, J.C. The Green Seaweed Ulva: A Model System to Study Morphogenesis. Front. Plant Sci. 2015, 6, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cocquyt, E.; Verbruggen, H.; Leliaert, F.; De Clerck, O. Evolution and Cytological Diversification of the Green Seaweeds (Ulvophyceae). Mol. Biol. Evol. 2010, 27, 2052–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybak, A.S.; Gąbka, M. The Influence of Abiotic Factors on the Bloom-Forming Alga Ulva flexuosa (Ulvaceae, Chlorophyta): Possibilities for the Control of the Green Tides in Freshwater Ecosystems. J. Appl. Phycol. 2018, 30, 1405–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, I.H.; Blomster, J.; Hansen, G.; Leskinen, E.; Maggs, C.A.; Mann, D.G.; Sluiman, H.J.; Stanhope, M.J. Molecular Phylogenetic Evidence for a Reversible Morphogenetic Switch Controlling the Gross Morphology of Two Common Genera of Green Seaweeds, Ulva and Enteromorpha. Mol. Biol. Evol. 1999, 16, 1011–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinhagen, S.; Weinberger, F.; Karez, R. Molecular Analysis of Ulva compressa (Chlorophyta, Ulvales) Reveals Its Morphological Plasticity, Distribution and Potential Invasiveness on German North Sea and Baltic Sea Coasts. Eur. J. Phycol. 2019, 54, 102–114. [Google Scholar] [CrossRef]
- Gao, G.; Zhong, Z.; Zhou, X.; Xu, J. Changes in Morphological Plasticity of Ulva prolifera under Different Environmental Conditions: A Laboratory Experiment. Harmful Algae 2016, 59, 51–58. [Google Scholar] [CrossRef]
- Alsufyani, T.; Alsufyani, T.; Califano, G.; Deicke, M.; Grueneberg, J.; Grueneberg, J.; Weiss, A.; Weiss, A.; Engelen, A.H.; Kwantes, M.; et al. Macroalgal-Bacterial Interactions: Identification and Role of Thallusin in Morphogenesis of the Seaweed Ulva (Chlorophyta). J. Exp. Bot. 2020, 71, 3340–3349. [Google Scholar] [CrossRef]
- Fort, A.; Linderhof, C.; Coca-Tagarro, I.; Inaba, M.; McHale, M.; Cascella, K.; Potin, P.; Guiry, M.D.; Sulpice, R. A Sequencing-Free Assay for Foliose Ulva Species Identification, Hybrid Detection and Bulk Biomass Characterisation. Algal Res. 2021, 55, 102280. [Google Scholar] [CrossRef]
- Malta, E.J.; Kamermans, P.; Draisma, S. Free-Floating Ulva in the Southwest Netherlands: Species or Morphotypes? A Morphological, Molecular and Ecological Comparison. Eur. J. Phycol. 1999, 34, 443–454. [Google Scholar] [CrossRef]
- Heesch, S.; Broom, J.E.S.; Neill, K.F.; Farr, T.J.; Dalen, J.L.; Nelson, W.A. Ulva, Umbraulva and Gemina: Genetic Survey of New Zealand Taxa Reveals Diversity and Introduced Species. Eur. J. Phycol. 2009, 44, 143–154. [Google Scholar] [CrossRef]
- Fort, A.; McHale, M.; Cascella, K.; Potin, P.; Perrineau, M.-M.; Kerrison, P.D.; Costa, E.; Calado, R.; Domingues, M.d.R.; Costa Azevedo, I.; et al. Exhaustive Reanalysis of Barcode Sequences from Public Repositories Highlights Ongoing Misidentifications and Impacts Taxa Diversity and Distribution. Mol. Ecol. Resour. 2022, 22, 86–101. [Google Scholar] [CrossRef] [PubMed]
- Guiry, M.; Guiry, G. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: http://www.algaebase.org (accessed on 15 August 2022).
- Barbier, M.; Charrier, B.; Araujo, R.; Holdt, S.; Jacquemin, B.; Rebours, C. PEGASUS-PHYCOMORPH European Guidelines for a Sustainable Aquaculture of Seaweeds; COST Action FA1406: Roscoff, France, February 2019. [Google Scholar]
- Mabeau, S.; Fleurence, J. Seaweed in Food Products: Biochemical and Nutritional Aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- Kang, Y.H.; Park, S.R.; Chung, I.K. Biofiltration Efficiency and Biochemical Composition of Three Seaweed Species Cultivated in a Fish-Seaweed Integrated Culture. Algae 2011, 26, 97–108. [Google Scholar] [CrossRef]
- Hurd, C.L.; Harrison, P.J.; Bischof, K.; Lobban, C.S. Seaweed Ecology and Physiology; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781139192637. [Google Scholar]
- Aníbal, J.; Madeira, H.T.; Carvalho, L.F.; Esteves, E.; Veiga-Pires, C.; Rocha, C. Macroalgae Mitigation Potential for Fish Aquaculture Effluents: An Approach Coupling Nitrogen Uptake and Metabolic Pathways Using Ulva rigida and Enteromorpha clathrata. Environ. Sci. Pollut. Res. 2014, 21, 13324–13334. [Google Scholar] [CrossRef] [PubMed]
- del Río, M.J.; Ramazanov, Z.; García-Reina, G. Ulva rigida (Ulvales, Chlorophyta) Tank Culture as Biofilters for Dissolved Inorganic Nitrogen from Fishpond Effluents. Hydrobiologia 1996, 326, 61–66. [Google Scholar] [CrossRef]
- Cruz-Suárez, L.E.; León, A.; Peña-Rodríguez, A.; Rodríguez-Peña, G.; Moll, B.; Ricque-Marie, D. Shrimp/Ulva Co-Culture: A Sustainable Alternative to Diminish the Need for Artificial Feed and Improve Shrimp Quality. Aquaculture 2010, 301, 64–68. [Google Scholar] [CrossRef]
- El-Sikaily, A.; El Nemr, A.; Khaled, A.; Abdelwehab, O. Removal of Toxic Chromium from Wastewater Using Green Alga Ulva lactuca and Its Activated Carbon. J. Hazard. Mater. 2007, 148, 216–228. [Google Scholar] [CrossRef]
- de Oliveira, V.P.; Martins, N.T.; Guedes, P.d.S.; Pollery, R.C.G.; Enrich-Prast, A. Bioremediation of Nitrogenous Compounds from Oilfield Wastewater by Ulva lactuca (Chlorophyta). Bioremediat. J. 2016, 20, 1–9. [Google Scholar] [CrossRef]
- Bolton, J.J.; Robertson-Andersson, D.V.; Shuuluka, D.; Kandjengo, L. Growing Ulva (Chlorophyta) in Integrated Systems as a Commercial Crop for Abalone Feed in South Africa: A Swot Analysis. J. Appl. Phycol. 2009, 21, 575–583. [Google Scholar] [CrossRef]
- Fort, A.; Lebrault, M.; Allaire, M.; Esteves-Ferreira, A.A.; McHale, M.; Lopez, F.; Fariñas-Franco, J.M.; Alseekh, S.; Fernie, A.R.; Sulpice, R. Extensive Variations in Diurnal Growth Patterns and Metabolism Among Ulva Spp. Strains. Plant Physiol. 2019, 180, 109–123. [Google Scholar] [CrossRef]
- Trivedi, N.; Baghel, R.S.; Bothwell, J.; Gupta, V.; Reddy, C.R.K.; Lali, A.M.; Jha, B. An Integrated Process for the Extraction of Fuel and Chemicals from Marine Macroalgal Biomass. Sci. Rep. 2016, 6, 30728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleurence, J. Seaweeds as Food; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128027936. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Rasyid, A. Evaluation of Nutritional Composition of The Dried Seaweed. Trop. Life Sci. Res. 2017, 28, 119–125. [Google Scholar] [CrossRef]
- Abdel-Fattah, A.F.; Edrees, M. Seasonal Changes in the Constituents of Ulva lactuca. Phytochemistry 1973, 12, 481–485. [Google Scholar] [CrossRef]
- Fleurence, J.; Chenard, E.; Luçon, M. Determination of the Nutritional Value of Proteins Obtained from Ulva armoricana. J. Appl. Phycol. 1999, 11, 231–239. [Google Scholar] [CrossRef]
- Shpigel, M.; Ragg, N.L.; Lupatsch, I.; Neori, A. Protein Content Determines the Nutritional Value of the Seaweed Ulva lactuca L for the Abalone Haliotis Tuberculata L. and H. Discus Hannai Ino. J. Shellfish Res. 1999, 18, 227–233. [Google Scholar]
- Marinho-Soriano, E.; Panucci, R.A.; Carneiro, M.A.A.; Pereira, D.C. Evaluation of Gracilaria Caudata J. Agardh for Bioremediation of Nutrients from Shrimp Farming Wastewater. Bioresour. Technol. 2009, 100, 6192–6198. [Google Scholar] [CrossRef]
- Singh, R.P.; Reddy, C.R.K. Unraveling the Functions of the Macroalgal Microbiome. Front. Microbiol. 2016, 6, 1488. [Google Scholar] [CrossRef]
- Harnedy, P.A.; Fitzgerald, R.J. Bioactive Proteins, Peptides, and Amino Acids from Macroalgae. J. Phycol. 2011, 47, 218–232. [Google Scholar] [CrossRef]
- Toth, G.B.; Harrysson, H.; Wahlström, N.; Olsson, J.; Oerbekke, A.; Steinhagen, S.; Kinnby, A.; White, J.; Albers, E.; Edlund, U.; et al. Effects of Irradiance, Temperature, Nutrients, and PCO2 on the Growth and Biochemical Composition of Cultivated Ulva fenestrata. J. Appl. Phycol. 2020, 32, 3243–3254. [Google Scholar] [CrossRef]
- Probst, Y. A Review of the Nutrient Composition of Selected Rubus Berries. Nutr. Food Sci. 2011, 45, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Nisizawa, K.; Noda, H.; Kikuchi, R.; Watanabe, T. The Main Seaweed Foods in Japan. Hydrobiologia 1987, 151–152, 5–29. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Okab, A.B.; Aljumaah, R.S.; Samara, E.M.; Abdoun, K.A.; Al-Haidary, A.A. Nutritional Value of Green Seaweed (Ulva lactuca) for Broiler Chickens. Ital. J. Anim. Sci. 2013, 12, 177–181. [Google Scholar] [CrossRef]
- Soybean, Nutrition and Health. In Soybean-Bio-Active Compounds; InTech: London, UK, 2013.
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Gupta, I.J.R. Nutrient Analysis of Raw and Processed Soybean and Development of Value Added Soybean Noodle. Inven. J. 2015, 1, 1–5. [Google Scholar]
- Rajauria, G.; Cornish, L.; Ometto, F.; Msuya, F.E.; Villa, R. Identification and Selection of Algae for Food, Feed, and Fuel Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780124186972. [Google Scholar]
- Gwirtz, J.A.; Garcia-Casal, M.N. Processing Maize Flour and Corn Meal Food Products. Ann. N. Y. Acad. Sci. 2014, 1312, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Alamo, A.; Pérez De Ayala, P.; Verstegen, M.W.A.; Den Hartog, L.A.; Villamide, M.J. Variability in Wheat: Factors Affecting Its Nutritional Value. Worlds Poult. Sci. J. 2008, 64, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Ranhotra, G.S.; Gelroth, J.A.; Glaser, B.K.; Lorenz, K.J. Baking and Nutritional Qualities of a Spelt Wheat Sample. LWT-Food Sci. Technol. 1995, 28, 118–122. [Google Scholar] [CrossRef]
- Fleurence, J.; Morançais, M.; Dumay, J. Seaweed Proteins. In Proteins Food Process, 2nd ed.; Woodhead Publishing: Sawston, UK, 2018; Volume 10, pp. 245–262. [Google Scholar] [CrossRef]
- Marsham, S.; Scott, G.W.; Tobin, M.L. Comparison of Nutritive Chemistry of a Range of Temperate Seaweeds. Food Chem. 2007, 100, 1331–1336. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical Composition and Functional Properties of Ulva lactuca Seaweed Collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Stitt, M.; Hurry, V. A Plant for All Seasons: Alterations in Photosynthetic Carbon Metabolism during Cold Acclimation in Arabidopsis. Curr. Opin. Plant Biol. 2002, 5, 199–206. [Google Scholar] [CrossRef]
- Pyl, E.T.; Piques, M.; Ivakov, A.; Schulze, W.; Ishihara, H.; Stitt, M.; Sulpice, R. Metabolism and Growth in Arabidopsis Depend on the Daytime Temperature but Are Temperature-Compensated against Cool Nights. Plant Cell 2012, 24, 2443–2469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuuluka, D.; Bolton, J.J.; Anderson, R.J. Protein Content, Amino Acid Composition and Nitrogen-to-Protein Conversion Factors of Ulva rigida and Ulva capensis from Natural Populations and Ulva lactuca from an Aquaculture System, in South Africa. J. Appl. Phycol. 2013, 25, 677–685. [Google Scholar] [CrossRef]
- Fleurence, J.; Le Coeur, C.; Mabeau, S.; Maurice, M.; Landrein, A. Comparison of Different Extractive Procedures for Proteins from the Edible Seaweeds Ulva rigida and Ulva rotundata. J. Appl. Phycol. 1995, 7, 577–582. [Google Scholar] [CrossRef]
- Van Den Burg, S.; Stuiver, M.; Veenstra, F.; Bikker, P.; Contreras, A.L.; Palstra, A.; Broeze, J.; Jansen, H.; Jak, R.; Gerritsen, A.; et al. A Triple P Review of the Feasibility of Sustainable Offshore Seaweed Production in the North Sea; Wageningen University & Research: Wageningen, The Netherlands, 2013; Volume 13-077, ISBN 9789086156528. [Google Scholar]
- Peña-Rodríguez, A.; Mawhinney, T.P.; Ricque-Marie, D.; Cruz-Suárez, L.E. Chemical Composition of Cultivated Seaweed Ulva clathrata (Roth) C. Agardh. Food Chem. 2011, 129, 491–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, G.G.; Hodgson, A.N. Consumption and Apparent Dry Matter Digestibility of Six Intertidal Macroalgae by Turbo Sarmaticus (Mollusca: Vetigastropoda: Turbinidae). Aquaculture 1998, 167, 211–227. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef]
- Shanmugam, A.; Palpandi, C. Biochemical Composition and Fatty Acid Profile of the Green Alga Ulva reticulata. Asian J. Biochem. 2008, 3, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Echave, J.; Lourenço-Lopes, C.; Carreira-Casais, A.; Chamorro, F.; Fraga-Corral, M.; Otero, P.; Garcia-Perez, P.; Baamonde, S.; Fernández-Saa, F.; Cao, H.; et al. Nutritional Composition of the Atlantic Seaweeds Ulva rigida, Codium tomentosum, Palmaria palmata and Porphyra purpurea. Chem. Proc. 2022, 5, 67. [Google Scholar] [CrossRef]
- Robic, A.; Sassi, J.F.; Dion, P.; Lerat, Y.; Lahaye, M. Seasonal Variability of Physicochemical and Rheological Properties of Ulvan in Two Ulva Species (Chlorophyta) from the Brittany Coast1. J. Phycol. 2009, 45, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Morelli, A.; Puppi, D.; Chiellini, F. Perspectives on Biomedical Applications of Ulvan. In Seaweed Polysaccharides; Elsevier: Amsterdam, The Netherlands, 2017; pp. 305–330. [Google Scholar] [CrossRef]
- Prabhu, M.S.; Israel, A.; Palatnik, R.R.; Zilberman, D.; Golberg, A. Integrated Biorefinery Process for Sustainable Fractionation of Ulva ohnoi (Chlorophyta): Process Optimization and Revenue Analysis. J. Appl. Phycol. 2020, 32, 2271–2282. [Google Scholar] [CrossRef]
- Lahaye, M.; Robic, A. Structure and Function Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Fowden, L. A Comparison of the Compositions of Some Algal Proteins. Ann. Bot. 1954, 18, 257–266. [Google Scholar] [CrossRef]
- Sumbo, H.A.; Victor, I.A. Comparison of Chemical Composition, Functional Properties and Amino Acids Composition of Quality Protein Maize and Common Maize (Zea may L.). Afr. J. Food Sci. Technol. 2014, 5, 81–89. [Google Scholar] [CrossRef]
- Kasimala, M.B.; Mebrahtu, L.; Magoha, P.; Asgedom, G. A Review on Biochemical Composition and Nutritional Aspects of Seaweed. Caribb. J. Sci. Technol. 2015, 3, 789–797. [Google Scholar]
- Yu-Qing, T.; Mahmood, K.; Shehzadi, R.; Ashraf, M.F. Ulva lactuca and Its Polysaccharides: Food and Biomedical Aspects. J. Biol. 2016, 6, 140–151. [Google Scholar]
- CEVA. Macroalgues et Microalgues Alimentaires-Statut Règlementaire En France et En Europe. Available online: https://www.ceva-algues.com/document/synthese-reglementaire-algues-alimentaires/ (accessed on 19 June 2022).
- Roleda, M.Y.; Heesch, S. Chemical Profiling of Ulva Species for Food Applications: What Is in a Name? Food Chem. 2021, 361, 130084. [Google Scholar] [CrossRef]
- Hughey, J.R.; Maggs, C.A.; Mineur, F.; Jarvis, C.; Miller, K.A.; Shabaka, S.H.; Gabrielson, P.W. Genetic Analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) Holotype and Related Type Specimens Reveals Name Misapplications, Unexpected Origins, and New Synonymies. J. Phycol. 2019, 55, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Haritonidis, S.; Malea, P. Bioaccumulation of Metals by the Green Alga Ulva rigida from Thermaikos Gulf, Greece. Environ. Pollut. 1999, 104, 365–372. [Google Scholar] [CrossRef]
- Villares, R.; Puente, X.; Carballeira, A. Seasonal Variation and Background Levels of Heavy Metals in Two Green Seaweeds. Environ. Pollut. 2002, 119, 79–90. [Google Scholar] [CrossRef]
- Almela, C.; Algora, S.; Benito, V.; Clemente, M.J.; Devesa, V.; Súñer, M.A.; Vélez, D.; Montoro, R. Heavy Metal, Total Arsenic, and Inorganic Arsenic Contents of Algae Food Products. J. Agric. Food Chem. 2002, 50, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Health and Food Safety|European Commission. (EC) No 118/2006-MAXIMUM Levels for Contaminants in FOOD Incl Mycotoxins. Available online: https://eur-lex.europa.eu/eli/reg/2021/1323/oj (accessed on 12 July 2022).
- Chapman, V.J.; Chapman, D.J. Seaweeds and Their Uses. In Chapman & Hall; Springer: Dordrecht, The Netherlands, 1980; pp. 1–29. ISBN 978-94-009-5808-1. [Google Scholar]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for Livestock Diets: A Review. Anim. Feed Sci. Technol. 2015, 212, 1–17. [Google Scholar] [CrossRef]
- Shields, R.; Lupatsch, I. Algae for Aquaculture and Animal Feeds. In Microalgal Biotechnology: Integration and Economy; DE GRUYTER: Berlin, Germany, 2012; pp. 23–27. [Google Scholar]
- Guerreiro, I.; Magalhães, R.; Coutinho, F.; Couto, A.; Sousa, S.; Delerue-Matos, C.; Domingues, V.F.; Oliva-Teles, A.; Peres, H. Evaluation of the Seaweeds Chondrus Crispus and Ulva lactuca as Functional Ingredients in Gilthead Seabream (Sparus Aurata). J. Appl. Phycol. 2019, 31, 2115–2124. [Google Scholar] [CrossRef]
- Qiu, X.; Neori, A.; Kim, J.K.; Yarish, C.; Shpigel, M.; Guttman, L.; Ben Ezra, D.; Odintsov, V.; Davis, D.A. Green Seaweed Ulva Sp. as an Alternative Ingredient in Plant-Based Practical Diets for Pacific White Shrimp, Litopenaeus Vannamei. J. Appl. Phycol. 2018, 30, 1317–1333. [Google Scholar] [CrossRef]
- Santizo-Taan, R.; Bautista-Teruel, M.; Maquirang, J.R.H. Enriched Ulva pertusa as Partial Replacement of the Combined Fish and Soybean Meals in Juvenile Abalone Haliotis Asinina (Linnaeus) Diet. J. Appl. Phycol. 2020, 32, 741–749. [Google Scholar] [CrossRef]
- Wassef, E.A.; El-Sayed, A.F.M.; Sakr, E.M. Pterocladia (Rhodophyta) and Ulva (Chlorophyta) as Feed Supplements for European Seabass, Dicentrarchus Labrax L., Fry. J. Appl. Phycol. 2013, 25, 1369–1376. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Gouveia, A.; Rema, P.; Matos, J.; Gomes, E.F.; Pinto, I.S. Evaluation of Three Seaweeds Gracilaria Bursa-Pastoris, Ulva rigida and Gracilaria Cornea as Dietary Ingredients in European Sea Bass (Dicentrarchus Labrax) Juveniles. Aquaculture 2006, 252, 85–91. [Google Scholar] [CrossRef]
- Hashim, R.; Saat, M.A.M. The Utilization of Seaweed Meals as Binding Agents in Pelleted Feeds for Snakehead (Channa Striatus) Fry and Their Effects on Growth. Aquaculture 1992, 108, 299–308. [Google Scholar] [CrossRef]
- Moroney, N.C.; Wan, A.H.L.; Soler-Vila, A.; O’Grady, M.N.; FitzGerald, R.D.; Johnson, M.P.; Kerry, J.P. Influence of Green Seaweed (Ulva rigida) Supplementation on the Quality and Shelf Life of Atlantic Salmon Fillets. J. Aquat. Food Prod. Technol. 2017, 26, 1175–1188. [Google Scholar] [CrossRef]
- Ergün, S.; Soyutürk, M.; Güroy, B.; Güroy, D.; Merrifield, D. Influence of Ulva Meal on Growth, Feed Utilization, and Body Composition of Juvenile Nile Tilapia (Oreochromis niloticus) at Two Levels of Dietary Lipid. Aquac. Int. 2009, 17, 355–361. [Google Scholar] [CrossRef]
- Arieli, A.; Sklan, D.; Kissil, G. A Note on the Nutritive Value of Ulva lactuca for Ruminants. Anim. Prod. 1993, 57, 329–331. [Google Scholar] [CrossRef]
- Wong, W.H.; Leung, K.L. Sewage Sludge and Seaweed (Ulva Sp.) as Supplementary Feed for Chicks. Environ. Pollut. 1979, 20, 93–101. [Google Scholar] [CrossRef]
- Lopes, N.; Ray, S.; Espada, S.F.; Bomfim, W.A.; Ray, B.; Faccin-Galhardi, L.C.; Linhares, R.E.C.; Nozawa, C. Green Seaweed Enteromorpha compressa (Chlorophyta, Ulvaceae) Derived Sulphated Polysaccharides Inhibit Herpes Simplex Virus. Int. J. Biol. Macromol. 2017, 102, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, G.; Celikler, S.; Vatan, O.; Dere, S. Determination of the Anti-Oxidative Capacity and Bioactive Compounds in Green Seaweed Ulva rigida C. Agardh. Int. J. Food Prop. 2012, 15, 1182–1189. [Google Scholar] [CrossRef] [Green Version]
- Spavieri, J.; Kaiser, M.; Casey, R.; Hingley-Wilson, S.; Lalvani, A.; Blunden, G.; Tasdemir, D. Antiprotozoal, Antimycobacterial and Cytotoxic Potential of Some British Green Algae. Phyther. Res. 2010, 24, 1095–1098. [Google Scholar] [CrossRef]
- Bhakuni, D.S.; Rawat, D.S. Bioactive Marine Natural Products; Springer: Dordrecht, The Netherlands, 2005; ISBN 978-1-4020-3472-5. [Google Scholar]
- Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Bouhaouala-Zahar, B.; Stal, L.J.; Boudabbous, A.; El Bour, M. Heterotrophic Bacteria Associated with the Green Alga Ulva rigida: Identification and Antimicrobial Potential. J. Appl. Phycol. 2018, 30, 2883–2899. [Google Scholar] [CrossRef]
- van der Wal, H.; Sperber, B.L.H.M.; Houweling-Tan, B.; Bakker, R.R.C.; Brandenburg, W.; López-Contreras, A.M. Production of Acetone, Butanol, and Ethanol from Biomass of the Green Seaweed Ulva lactuca. Bioresour. Technol. 2013, 128, 431–437. [Google Scholar] [CrossRef]
- Manochio, C.; Andrade, B.R.; Rodriguez, R.P.; Moraes, B.S. Ethanol from Biomass: A Comparative Overview. Renew. Sustain. Energy Rev. 2017, 80, 743–755. [Google Scholar] [CrossRef]
- Coelho, M.S.; Barbosa, F.G.; Souza, M. The Scientometric Research on Macroalgal Biomass as a Source of Biofuel Feedstock. Algal Res. 2014, 6, 132–138. [Google Scholar] [CrossRef]
- Adenle, A.A.; Haslam, G.E.; Lee, L. Global Assessment of Research and Development for Algae Biofuel Production and Its Potential Role for Sustainable Development in Developing Countries. Energy Policy 2013, 61, 182–195. [Google Scholar] [CrossRef]
- Qarri, A.; Israel, A. Seasonal Biomass Production, Fermentable Saccharification and Potential Ethanol Yields in the Marine Macroalga Ulva Sp. (Chlorophyta). Renew. Energy 2020, 145, 2101–2107. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Hebbale, D. Bioethanol from Macroalgae: Prospects and Challenges. Renew. Sustain. Energy Rev. 2020, 117, 109479. [Google Scholar] [CrossRef]
- Reznik, A.; Israel, A. Fuel from Seaweeds: Rationale and Feasibility; Springer: Dordrecht, The Netherlands, 2012; Volume 25, pp. 341–354. ISBN 978-94-007-5109-5. [Google Scholar]
- Korzen, L.; Peled, Y.; Shamir, S.Z.; Shechter, M.; Gedanken, A.; Abelson, A.; Israel, A. An Economic Analysis of Bioethanol Production from the Marine Macroalga Ulva (Chlorophyta). Technology 2015, 3, 114–118. [Google Scholar] [CrossRef]
- Naldi, M.; Wheeler, P.A. 15N Measurements of Ammonium and Nitrate Uptake by Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta): Comparison of Net Nutrient Disappearance, Release of Ammonium and Nitrate, and 15N Accumulation in Algal Tissue. J. Phycol. 2002, 38, 135–144. [Google Scholar] [CrossRef]
- Yokoyama, H.; Ishihi, Y. Bioindicator and Biofilter Function of Ulva Spp. (Chlorophyta) for Dissolved Inorganic Nitrogen Discharged from a Coastal Fish Farm-Potential Role in Integrated Multi-Trophic Aquaculture. Aquaculture 2010, 310, 74–83. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Bruhn, A.; Rasmussen, M.B.; Olesen, B.; Larsen, M.M.; Møller, H.B. Cultivation of Ulva lactuca with Manure for Simultaneous Bioremediation and Biomass Production. J. Appl. Phycol. 2012, 24, 449–458. [Google Scholar] [CrossRef]
- Fort, A.; Mannion, C.; Fariñas-Franco, J.M.; Sulpice, R. Green Tides Select for Fast Expanding Ulva Strains. Sci. Total Environ. 2020, 698, 134337. [Google Scholar] [CrossRef]
- Ryther, J.H.; Debusk, T.A.; Blakeslee, M. Cultivation and Conversion of Marine Macroalgae. [Gracilaria and Ulva]; Harbor Branch Foundation: Fort Pierce, FL, USA, 1984. [Google Scholar]
- Hernandez, I.; Peralta, G.; Perez-Llorens, J.L.; Vergara, J.J.; Niell, F.X. Biomass and Dynamics of Growth of Ulva Species in Palmones River Estuary. J. Phycol. 1997, 33, 764–772. [Google Scholar] [CrossRef]
- Cahill, P.L.; Hurd, C.L.; Lokman, M. Keeping the Water Clean—Seaweed Biofiltration Outperforms Traditional Bacterial Biofilms in Recirculating Aquaculture. Aquaculture 2010, 306, 153–159. [Google Scholar] [CrossRef]
- Shahar, B.; Shpigel, M.; Barkan, R.; Masasa, M.; Neori, A.; Chernov, H.; Salomon, E.; Kiflawi, M.; Guttman, L. Changes in Metabolism, Growth and Nutrient Uptake of Ulva fasciata (Chlorophyta) in Response to Nitrogen Source. Algal Res. 2020, 46, 101781. [Google Scholar] [CrossRef]
- Copertino, M.D.S.; Tormena, T.; Seeliger, U. Biofiltering Efficiency, Uptake and Assimilation Rates of Ulva clathrata (Roth) J. Agardh (Clorophyceae) Cultivated in Shrimp Aquaculture Waste Water. J. Appl. Phycol. 2009, 21, 31–45. [Google Scholar] [CrossRef]
- Henriques, B.; Teixeira, A.; Figueira, P.; Reis, A.T.; Almeida, J.; Vale, C.; Pereira, E. Simultaneous Removal of Trace Elements from Contaminated Waters by Living Ulva lactuca. Sci. Total Environ. 2019, 652, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.M.; Hassan, A.F.; Azab, Y.A. Biosorption of Toxic Heavy Metals from Aqueous Solution by Ulva lactuca Activated Carbon. Egypt. J. Basic Appl. Sci. 2016, 3, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Shpigel, M.; Shauli, L.; Odintsov, V.; Ashkenazi, N.; Ben-Ezra, D. Ulva lactuca Biofilter from a Land-Based Integrated Multi Trophic Aquaculture (IMTA) System as a Sole Food Source for the Tropical Sea Urchin Tripneustes Gratilla Elatensis. Aquaculture 2018, 496, 221–231. [Google Scholar] [CrossRef]
- Msuya, F.E.; Neori, A. Ulva reticulata and Gracilaria crassa: Macroalgae That Can Biofilter Effluent from Tidal Fishponds in Tanzania. West. Indian Ocean J. Mar. Sci. 2002, 1, 117–126. [Google Scholar]
- Fan, X.; Xu, D.; Wang, D.; Wang, Y.; Zhang, X.; Ye, N. Nutrient Uptake and Transporter Gene Expression of Ammonium, Nitrate, and Phosphorus in Ulva linza: Adaption to Variable Concentrations and Temperatures. J. Appl. Phycol. 2020, 32, 1311–1322. [Google Scholar] [CrossRef]
- Choi, T.-S.; Kang, E.-J.; Kim, J.-H.; Kim, K.-Y. Effect of Salinity on Growth and Nutrient Uptake of Ulva pertusa (Chlorophyta) from an Eelgrass Bed. Algae 2010, 25, 17–26. [Google Scholar] [CrossRef]
- Cherry, P.; O’hara, C.; Magee, P.J.; Mcsorley, E.M.; Allsopp, P.J. Risks and Benefits of Consuming Edible Seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [Green Version]
- Polikovsky, M.; Califano, G.; Dunger, N.; Wichard, T.; Golberg, A. Engineering Bacteria-Seaweed Symbioses for Modulating the Photosynthate Content of Ulva (Chlorophyta): Significant for the Feedstock of Bioethanol Production. Algal Res. 2020, 49, 101945. [Google Scholar] [CrossRef]
- McCauley, J.I.; Winberg, P.C.; Meyer, B.J.; Skropeta, D. Effects of Nutrients and Processing on the Nutritionally Important Metabolites of Ulva Sp. (Chlorophyta). Algal Res. 2018, 35, 586–594. [Google Scholar] [CrossRef]
- Kang, M.S. Using Genotype-by-Environment Interaction for Crop Cultivar Development. Adv. Agron. 1997, 62, 199–252. [Google Scholar] [CrossRef]
- Hill, J. Genotype-Environment Interactions—A Challenge for Plant Breeding. J. Agric. Sci. 1975, 85, 477–493. [Google Scholar] [CrossRef]
- Fries, L. Some Observations on the Morphology of Enteromorpha linza and Enteromorpha compressa in Axenic Culture. Bot. Mar. 1975, 18, 251–253. [Google Scholar]
- Zertuche-González, J.A.; Sandoval-Gil, J.M.; Rangel-Mendoza, L.K.; Gálvez-Palazuelos, A.I.; Guzmán-Calderón, J.M.; Yarish, C. Seasonal and Interannual Production of Sea Lettuce (Ulva Sp.) in Outdoor Cultures Based on Commercial Size Ponds. J. World Aquac. Soc. 2021, 52, 1047–1058. [Google Scholar] [CrossRef]
- Kirst, G.O. Salinity Tolerance of Eukaryotic Marine Algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41, 21–53. [Google Scholar] [CrossRef]
- Rybak, A.S. Species of Ulva (Ulvophyceae, Chlorophyta) as Indicators of Salinity. Ecol. Indic. 2018, 85, 253–261. [Google Scholar] [CrossRef]
- Zaneveld, J.S. Factors Controlling the Delimitation of Littoral Benthic Marine Algal Zonation. Integr. Comp. Biol. 1969, 9, 367–391. [Google Scholar] [CrossRef] [Green Version]
- Xing, Q.; Bi, G.; Cao, M.; Belcour, A.; Aite, M.; Mo, Z.; Mao, Y. Comparative Transcriptome Analysis Provides Insights into Response of Ulva compressa to Fluctuating Salinity Conditions. J. Phycol. 2021, 57, 1295–1308. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Pang, S.J. Stress Tolerance and Antioxidant Enzymatic Activities in the Metabolisms of the Reactive Oxygen Species in Two Intertidal Red Algae Grateloupia Turuturu and Palmaria Palmata. J. Exp. Mar. Biol. Ecol. 2010, 382, 82–87. [Google Scholar] [CrossRef]
- Karsten, U.; Wiencke, C.; Kirst, G. The Effect of Salinity Changes upon the Physiology of Eulittoral Green Macroalgae from Antarctica and Southern Chile. J. Exp. Bot. 1991, 42, 1533–1539. [Google Scholar] [CrossRef]
- Wu, T.M.; Lee, T.M. Regulation of Activity and Gene Expression of Antioxidant Enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in Response to Excess Copper. Phycologia 2008, 47, 346–360. [Google Scholar] [CrossRef]
- Lu, I.F.; Sung, M.S.; Lee, T.M. Salinity Stress and Hydrogen Peroxide Regulation of Antioxidant Defense System in Ulva fasciata. Mar. Biol. 2006, 150, 1–15. [Google Scholar] [CrossRef]
- Martins, I.; Oliveira, J.M.; Flindt, M.R.; Marques, J.C. The Effect of Salinity on the Growth Rate of the Macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego Estuary (West Portugal). Acta Oecol. 1999, 20, 259–265. [Google Scholar] [CrossRef]
- Lartigue, J.; Neill, A.; Hayden, B.L.; Pulfer, J.; Cebrian, J. The Impact of Salinity Fluctuations on Net Oxygen Production and Inorganic Nitrogen Uptake by Ulva lactuca (Chlorophyceae). Aquat. Bot. 2003, 75, 339–350. [Google Scholar] [CrossRef]
- Kakinuma, M.; Coury, D.A.; Kuno, Y.; Itoh, S.; Kozawa, Y.; Inagaki, E.; Yoshiura, Y.; Amano, H. Physiological and Biochemical Responses to Thermal and Salinity Stresses in a Sterile Mutant of Ulva pertusa (Ulvales, Chlorophyta). Mar. Biol. 2006, 149, 97–106. [Google Scholar] [CrossRef]
- Zheng, M.; Lin, J.; Zhou, S.; Zhong, J.; Li, Y.; Xu, N. Salinity Mediates the Effects of Nitrogen Enrichment on the Growth, Photosynthesis, and Biochemical Composition of Ulva prolifera. Environ. Sci. Pollut. Res. 2019, 26, 19982–19990. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Qu, L.; Xu, T.; Burgess, J.G.; Li, X.; Xu, J.; Norkko, J. Future CO2-Induced Ocean Acidification Enhances Resilience of a Green Tide Alga to Low-Salinity Stress. ICES J. Mar. Sci. 2019, 76, 2437–2445. [Google Scholar] [CrossRef]
- Ichihara, K.; Miyaji, K.; Shimada, S. Comparing the Low-Salinity Tolerance of Ulva Species Distributed in Different Environments. Phycol. Res. 2013, 61, 52–57. [Google Scholar] [CrossRef]
- Kamer, K.; Fong, P. A Fluctuating Salinity Regime Mitigates the Negative Effects of Reduced Salinity on the Estuarine Macroalga, Enteromorpha intestinalis (L.) Link. J. Exp. Mar. Biol. Ecol. 2000, 254, 53–69. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, X.; Gao, C.; Jiang, M.; Li, R.; Wang, Z.; Li, Y.; Fan, S.; Zhang, X. Effect of Temperature, Salinity and Irradiance on Growth and Photosynthesis of Ulva prolifera. Acta Oceanol. Sin. 2016, 35, 114–121. [Google Scholar] [CrossRef]
- McAvoy, K.M.; Klug, J.L. Positive and Negative Effects of Riverine Input on the Estuarine Green Alga Ulva intestinalis (Syn. Enteromorpha intestinalis) (Linneaus). Hydrobiologia 2005, 545, 1–9. [Google Scholar] [CrossRef]
- Luo, M.B.; Liu, F. Salinity-Induced Oxidative Stress and Regulation of Antioxidant Defense System in the Marine Macroalga Ulva prolifera. J. Exp. Mar. Biol. Ecol. 2011, 409, 223–228. [Google Scholar] [CrossRef]
- Messyasz, B.; Rybak, A. Abiotic Factors Affecting the Development of Ulva Sp. (Ulvophyceae; Chlorophyta) in Freshwater Ecosystems. Aquat. Ecol. 2011, 45, 75–87. [Google Scholar] [CrossRef]
- Hofmann, L.C.; Nettleton, J.C.; Neefus, C.D.; Mathieson, A.C. Cryptic Diversity of Ulva (Ulvales, Chlorophyta) in the Great Bay Estuarine System (Atlantic USA): Introduced and Indigenous Distromatic Species. Eur. J. Phycol. 2010, 45, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Blomster, J.; Maggs, C.A.; Stanhope, M.J. Molecular and Morphological Analysis of Enteromorpha intestinalis and E. compressa (Chlorophyta) in the British Isles. J. Phycol. 1998, 34, 319–340. [Google Scholar] [CrossRef]
- Burrows, E.M.; De Silva, M.W.R.N. An Experimental Assessment of the Status of the Species Enteromorpha intestinalis (L.) Link and Enteromorpha compressa (L.) Grev. J. Mar. Biol. Assoc. U. K. 1973, 53, 895–904. [Google Scholar] [CrossRef]
- van der Loos, L.M.; D’hondt, S.; Engelen, A.H.; Pavia, H.; Toth, G.B.; Willems, A.; Weinberger, F.; De Clerck, O.; Steinhagen, S. Salinity and Host Drive Ulva -associated Bacterial Communities across the Atlantic–Baltic Sea Gradient. Mol. Ecol. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Messyasz, B.; Rybak, A. The Distribution of Green Algae Species from the Ulva genera (Syn. Enteromorpha; Chlorophyta) in Polish Inland Waters. Oceanol. Hydrobiol. Stud. 2009, 38, 121–138. [Google Scholar] [CrossRef]
- Blomster, J.; Bäck, S.; Fewer, D.P.; Kiirikki, M.; Lehvo, A.; Maggs, C.A.; Stanhope, M.J. Novel Morphology in Enteromorpha (Ulvophyceae) Forming Green Tides. Am. J. Bot. 2002, 89, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Rybak, A.S. Revision of Herbarium Specimens of Freshwater Enteromorpha-like Ulva (Ulvaceae, Chlorophyta) Collected from Central Europe during the Years 1849–1959. Phytotaxa 2015, 218, 001–029. [Google Scholar] [CrossRef]
- Valiela, I.; McClelland, J.; Hauxwell, J.; Behr, P.J.; Hersh, D.; Foreman, K. Macroalgal Blooms in Shallow Estuaries: Controls and Ecophysiological and Ecosystem Consequences. Limnol. Oceanogr. 1997, 42, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Masakiyo, Y.; Ogura, A.; Ichihara, K.; Yura, K.; Shimada, S. Candidate Key Genes for Low-Salinity Adaptation Identified by RNA-Seq Comparison between Closely Related Ulva Species in Marine and Brackish Waters. Algal Ressour. 2016, 9, 61–76. [Google Scholar]
- Matsuo, Y.; Imagawa, H.; Nishizawa, M.; Shizuri, Y. Isolation of an Algal Morphogenesis Inducer from a Marine Bacterium. Science 2005, 307, 1598. [Google Scholar] [CrossRef] [PubMed]
- Spoerner, M.; Wichard, T.; Bachhuber, T.; Stratmann, J.; Oertel, W. Growth and Thallus Morphogenesis of Ulva mutabilis (Chlorophyta) Depends on A Combination of Two Bacterial Species Excreting Regulatory Factors. J. Phycol. 2012, 48, 1433–1447. [Google Scholar] [CrossRef] [PubMed]
- Provasoli, L.; Pintner, I.J. Bacteria Induced Polymorphism in an Axenic Strain of Ulva lactuca (Chlorophyceae). J. Phycol. 1980, 16, 196–201. [Google Scholar] [CrossRef]
- Marshall, K.; Joint, I.; Callow, M.E.; Callow, J.A. Effect of Marine Bacterial Isolates on the Growth and Morphology of Axenic Plantlets of the Green Alga Ulva linza. Microb. Ecol. 2006, 52, 302–310. [Google Scholar] [CrossRef]
- Ghaderiardakani, F.; Coates, J.C.; Wichard, T. Bacteria-Induced Morphogenesis of Ulva intestinalis and Ulva mutabilis (Chlorophyta): A Contribution to the Lottery Theory. FEMS Microbiol. Ecol. 2017, 93, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.; Sun, F.; Wang, C.; Zhang, L.; Zhang, X. Assessment of the Effect of Enteromorpha Prolifera on Bacterial Community Structures in Aquaculture Environment. PLoS ONE 2017, 12, e0179792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.P.; Mantri, V.A.; Reddy, C.R.K.; Jha, B. Isolation of Seaweed-Associated Bacteria and Their Morphogenesis-Inducing Capability in Axenic Cultures of the Green Alga Ulva fasciata. Aquat. Biol. 2011, 12, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Califano, G.; Kwantes, M.; Abreu, M.H.; Costa, R.; Wichard, T. Cultivating the Macroalgal Holobiont: Effects of Integrated Multi-Trophic Aquaculture on the Microbiome of Ulva rigida (Chlorophyta). Front. Mar. Sci. 2020, 7, 52. [Google Scholar] [CrossRef]
- Ghaderiardakani, F.; Quartino, M.L.; Wichard, T. Microbiome-Dependent Adaptation of Seaweeds Under Environmental Stresses: A Perspective. Front. Mar. Sci. 2020, 7, 575228. [Google Scholar] [CrossRef]
- Burke, C.; Thomas, T.; Lewis, M.; Steinberg, P.; Kjelleberg, S. Composition, Uniqueness and Variability of the Epiphytic Bacterial Community of the Green Alga Ulva australis. ISME J. 2011, 5, 590–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, A.H.; Marzinelli, E.M.; Gelber, J.; Steinberg, P.D. Spatial Variability of Microbial Assemblages Associated with a Dominant Habitat-Forming Seaweed. Front. Microbiol. 2015, 6, 230. [Google Scholar] [CrossRef] [PubMed]
- Tujula, N.A.; Crocetti, G.R.; Burke, C.; Thomas, T.; Holmström, C.; Kjelleberg, S. Variability and Abundance of the Epiphytic Bacterial Community Associated with a Green Marine Ulvacean Alga. ISME J. 2010, 4, 301–311. [Google Scholar] [CrossRef]
- Saha, M.; Ferguson, R.M.W.; Dove, S.; Künzel, S.; Meichssner, R.; Neulinger, S.C.; Petersen, F.O.; Weinberger, F. Salinity and Time Can Alter Epibacterial Communities of an Invasive Seaweed. Front. Microbiol. 2020, 10, 2876. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Knight, R. Global Patterns in Bacterial Diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 11436–11440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratil, S.B.; Neulinger, S.C.; Knecht, H.; Friedrichs, A.K.; Wahl, M. Salinity Affects Compositional Traits of Epibacterial Communities on the Brown Macroalga Fucus Vesiculosus. FEMS Microbiol. Ecol. 2014, 88, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.P.; Reddy, C.R.K. Seaweed-Microbial Interactions: Key Functions of Seaweed-Associated Bacteria. FEMS Microbiol. Ecol. 2014, 88, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Ghaderiardakani, F.; Califano, G.; Mohr, J.; Abreu, M.; Coates, J.; Wichard, T. Analysis of Algal Growth- and Morphogenesis-Promoting Factors in an Integrated Multi-Trophic Aquaculture System for Farming Ulva spp. Aquac. Environ. Interact. 2019, 11, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Gemin, M.; Peña-Rodríguez, A.; Quiroz-Guzmán, E.; Magallón-Servín, P.; Barajas-Sandoval, D.; Elizondo-González, R. Growth-Promoting Bacteria for the Green Seaweed Ulva clathrata. Aquac. Res. 2019, 50, 3741–3748. [Google Scholar] [CrossRef]
- Wang, H.; Elyamine, A.M.; Liu, Y.; Liu, W.; Chen, Q.; Xu, Y.; Peng, T.; Hu, Z. Hyunsoonleella Sp. HU1-3 Increased the Biomass of Ulva fasciata. Front. Microbiol. 2022, 12, 788709. [Google Scholar] [CrossRef] [PubMed]
- Wichard, T. From Model Organism to Application: Bacteria-Induced Growth and Development of the Green Seaweed Ulva and the Potential of Microbe Leveraging in Algal Aquaculture. In Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Ogawa, T.; Ohki, K.; Kamiya, M. High Heterozygosity and Phenotypic Variation of Zoids in Apomictic Ulva prolifera (Ulvophyceae) from Brackish Environments. Aquat. Bot. 2015, 120, 185–192. [Google Scholar] [CrossRef]
- Lawton, R.J.; Mata, L.; de Nys, R.; Paul, N.A. Algal Bioremediation of Waste Waters from Land-Based Aquaculture Using Ulva: Selecting Target Species and Strains. PLoS ONE 2013, 8, e77344. [Google Scholar] [CrossRef]
- Fort, A.; McHale, M.; Cascella, K.; Potin, P.; Usadel, B.; Guiry, M.D.; Sulpice, R. Foliose Ulva Species Show Considerable Inter-Specific Genetic Diversity, Low Intra-Specific Genetic Variation, and the Rare Occurrence of Inter-Specific Hybrids in the Wild1. J. Phycol. 2020, 233, 219–233. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, J.; Chen, L.; Hu, M.; Yu, K.; Chen, Q.; He, Q.; He, P. Green Algae Blooms Caused by Ulva prolifera in the Southern Yellow Sea: Identification of the Original Bloom Location and Evaluation of Biological Processes Occurring during the Early Northward Floating Period. Limnol. Oceanogr. 2013, 58, 2206–2218. [Google Scholar] [CrossRef]
- Liu, F.; Melton, J.T. Chloroplast Genomes of the Green-Tide Forming Alga Ulva compressa: Comparative Chloroplast Genomics in the Genus Ulva (Ulvophyceae, Chlorophyta). Front. Mar. Sci. 2021, 8, 668542. [Google Scholar] [CrossRef]
- Oyserman, B.O.; Cordovez, V.; Flores, S.S.; Leite, M.F.A.; Nijveen, H.; Medema, M.H.; Raaijmakers, J.M. Extracting the GEMs: Genotype, Environment, and Microbiome Interactions Shaping Host Phenotypes. Front. Microbiol. 2021, 11, 574053. [Google Scholar] [CrossRef]
- Joint, I.; Callow, M.E.; Callow, J.A.; Clarke, K.R. The Attachment of Enteromorpha Zoospores to a Bacterial Biofilm Assemblage. Biofouling 2000, 16, 151–158. [Google Scholar] [CrossRef]
- Oertel, W.; Wichard, T.; Weissgerber, A. Transformation of Ulva mutabilis (Chlorophyta) by Vector Plasmids Integrating into the Genome. J. Phycol. 2015, 51, 963–979. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.L.; Collet, C.; Purton, S. Algal Transgenics in the Genomic Era. J. Phycol. 2005, 41, 1077–1093. [Google Scholar] [CrossRef]
- Robinson, N.; Winberg, P.; Kirkendale, L. Genetic Improvement of Macroalgae: Status to Date and Needs for the Future. J. Appl. Phycol. 2013, 25, 703–716. [Google Scholar] [CrossRef]
Ulva spp. | Soybean | Corn | Wheat | |
---|---|---|---|---|
Proteins | 9–29 | 37–43 | 10 | 9–19 |
Carbohydrates | 41–50 | 20–30 | 74–85 | 61–84 |
Lipids | 1–12 | 20 | 4 | 2 |
Ashes | 14–52 | 6 | 1.2 | 1.5–2 |
Magnesium | 2–5.2 | 0.12 | 0.13 | 0.14 |
Potassium | 0.7–1.5 | 1.5 | 0.29 | 0.4 |
Calcium | 0.8–6.2 | 0.3 | 0.007 | 0.04 |
Sodium | 0.4–2.9 | 0.3 | 0.04 | 0.001 |
Ulva spp. | Soybean | Corn | Wheat | |
---|---|---|---|---|
Phenylalanine | 3.9–7.1 | 2.4 | 3.5 | 4.1 |
Leucine | 4.6–6.9 | 7.3 | 8.8 | 5.9 |
Methionine | 1.4–2.6 | 1.2–1.4 | 0.9 | 1.3 |
Lysine | 3.5–4.5 | 6.4–6.5 | 1.8 | 2.9 |
Isoleucine | 2.3–3.7 | 3.6 | 2.5 | 1.8 |
Valine | 4.1–6.2 | 4.5 | 3.0 | 3.1 |
Threonine | 3.1–6.9 | 4.0 | 2.0 | 2.9 |
Histidine | 1.2–4.0 | 3.8–4.0 | 2.0 | 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, C.; McHale, M.; Sulpice, R. Applications of Ulva Biomass and Strategies to Improve Its Yield and Composition: A Perspective for Ulva Aquaculture. Biology 2022, 11, 1593. https://doi.org/10.3390/biology11111593
Simon C, McHale M, Sulpice R. Applications of Ulva Biomass and Strategies to Improve Its Yield and Composition: A Perspective for Ulva Aquaculture. Biology. 2022; 11(11):1593. https://doi.org/10.3390/biology11111593
Chicago/Turabian StyleSimon, Clara, Marcus McHale, and Ronan Sulpice. 2022. "Applications of Ulva Biomass and Strategies to Improve Its Yield and Composition: A Perspective for Ulva Aquaculture" Biology 11, no. 11: 1593. https://doi.org/10.3390/biology11111593
APA StyleSimon, C., McHale, M., & Sulpice, R. (2022). Applications of Ulva Biomass and Strategies to Improve Its Yield and Composition: A Perspective for Ulva Aquaculture. Biology, 11(11), 1593. https://doi.org/10.3390/biology11111593