BioFire FilmArray BCID2 versus VITEK-2 System in Determining Microbial Etiology and Antibiotic-Resistant Genes of Pathogens Recovered from Central Line-Associated Bloodstream Infections
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Inclusion Criteria
2.2. Microbiological Procedures
2.3. BioFire FilmArray BCID2 Testing
2.4. Statistical Data Analysis
3. Results
3.1. Study Population
3.2. Identification of Microbial Isolates
3.3. Discordant Identification
3.4. Detection of Resistance Genes
3.5. Discordant Genotypic Results Obtained by VITEK-2 System and BCID2 Panel
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deku, J.G.; Dakorah, M.P.; Lokpo, S.Y.; Orish, V.N.; Ussher, F.A.; Kpene, G.E.; Eshun, V.A.; Agyei, E.; Attivor, W.; Osei-Yeboah, J. The epidemiology of bloodstream infections and antimicrobial susceptibility patterns: A nine-year retrospective study at St. Dominic Hospital, Akwatia, Ghana. J. Trop. Med. 2019, 2019, 6750864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, K.Y.; Cheng, A.; Chang, Y.C.; Hung, M.C.; Wang, J.T.; Sheng, W.H.; Hseuh, P.R.; Chen, Y.C.; Chang, S.C. Central line-associated bloodstream infections among critically-ill patients in the era of bundle care. J. Microbiol. Immunol. Infect. 2017, 50, 339–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selby, L.M.; Rupp, M.E.; Cawcutt, K.A. Prevention of Central-Line Associated Bloodstream Infections: 2021 Update. Infect. Dis. Clin. 2021, 35, 841–856. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoneim, H.M.; Ibrahim, H.M.; Ahmed, A.R.; Mohammed, K.A. Incidence of central line-associated blood steam infection in Pediatric Intensive Care Unit (PICU). Egypt. J. Hosp. Med. 2020, 78, 136–141. [Google Scholar] [CrossRef]
- Al-Khawaja, S.; Saeed, N.K.; Al-Khawaja, S.; Azzam, N.; Al-Biltagi, M. Trends of central line-associated bloodstream infections in the intensive care unit in the Kingdom of Bahrain: Four years’ experience. World J. Crit. Care Med. 2021, 10, 220. [Google Scholar] [CrossRef]
- Kern, W.V.; Rieg, S. Burden of bacterial bloodstream infection—A brief update on epidemiology and significance of multidrug-resistant pathogens. Clin. Microbiol. Infect. 2020, 26, 151–157. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States; Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- Raphael, E.; Glymour, M.M.; Chambers, H.F. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community-and healthcare-associated bacteriuria: Results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob. Resist. Infect. Control 2021, 10, 118. [Google Scholar] [CrossRef]
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections caused by carbapenem-resistant Enterobacteriaceae: An update on therapeutic options. Front. Microbiol. 2019, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Selim, S.; Faried, O.A.; Almuhayawi, M.S.; Saleh, F.M.; Sharaf, M.; El Nahhas, N.; Warrad, M. Incidence of Vancomycin-Resistant S. aureus Strains among Patients with Urinary Tract Infections. Antibiotics 2022, 11, 408. [Google Scholar] [CrossRef]
- Berinson, B.; Both, A.; Berneking, L.; Christner, M.; Lütgehetmann, M.; Aepfelbacher, M.; Rohde, H. Usefulness of BioFire FilmArray BCID2 for blood culture processing in clinical practice. J. Clin. Microbiol. 2021, 59, e00543-21. [Google Scholar] [CrossRef]
- Timsit, J.F.; Ruppé, E.; Barbier, F.; Tabah, A.; Bassetti, M. Bloodstream infections in critically ill patients: An expert statement. Intensive Care Med. 2020, 46, 266–284. [Google Scholar] [CrossRef]
- Kang, C.-M.; Chen, X.-J.; Chih, C.-C.; Hsu, C.-C.; Chen, P.-H.; Lee, T.-F.; Teng, L.-J.; Hsueh, P.-R. Rapid identification of bloodstream bacterial and fungal pathogens and their antibiotic resistance determinants from positively flagged blood cultures using the BioFire FilmArray blood culture identification panel. J. Microbiol. Immunol. Infect. 2020, 53, 882–891. [Google Scholar] [CrossRef]
- Bruins, M.J.; Bloembergen, P.; Ruijs, G.J.; Wolfhagen, M.J. Identification and susceptibility testing of Enterobacteriaceae and Pseudomonas aeruginosa by direct inoculation from positive BACTEC blood culture bottles into Vitek 2. J. Clin. Microbiol. 2004, 42, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Nimer, N.A.; Al-Saa’da, R.J.; Abuelaish, O. Accuracy of the VITEK 2 system for a rapid and direct identification and susceptibility testing of gram-negative rods and gram-positive cocci in blood samples. East. Mediterr. Health J. 2016, 22, 193–200. [Google Scholar] [CrossRef]
- Rule, R.; Paruk, F.; Becker, P.; Neuhoff, M.; Chausse, J.; Said, M. Clinical utility of the BioFire FilmArray Blood Culture Identification panel in the adjustment of empiric antimicrobial therapy in the critically ill septic patient. PLoS ONE 2021, 16, e0254389. [Google Scholar] [CrossRef]
- Baier, C.; Linke, L.; Eder, M.; Schwab, F.; Chaberny, I.F.; Vonberg, R.P.; Ebadi, E. Incidence, risk factors and healthcare costs of central line-associated nosocomial bloodstream infections in hematologic and oncologic patients. PLoS ONE 2020, 15, e0227772. [Google Scholar] [CrossRef]
- Kamel, N.A.; Alshahrani, M.Y.; Aboshanab, K.M.; El Borhamy, M.I. Evaluation of the BioFire FilmArray Pneumonia Panel Plus to the Conventional Diagnostic Methods in Determining the Microbiological Etiology of Hospital-Acquired Pneumonia. Biology 2022, 11, 377. [Google Scholar] [CrossRef]
- Ling, T.K.; Liu, Z.K.; Cheng, A.F. Evaluation of the VITEK 2 system for rapid direct identification and susceptibility testing of gram-negative bacilli from positive blood cultures. J. Clin. Microbiol. 2003, 41, 4705–4707. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.R.; Lee, S.Y.; Yang, B.H.; Lu, J.J. Rapid identification and susceptibility testing using the VITEK 2 system using culture fluids from positive BacT/ALERT blood cultures. J. Microbiol. Immunol. Infect. 2008, 41, 259–264. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. In CLSI Supplement M100, 30th ed.; Clinical and Laboratory Standards Institut: Wayne, PA, USA, 2020. [Google Scholar]
- Buetti, N.; Marschall, J.; Drees, M.; Fakih, M.G.; Hadaway, L.; Maragakis, L.L.; Monsees, E.; Novosad, S.; O’Grady, N.P.; Rupp, M.E.; et al. Strategies to prevent central line-associated bloodstream infections in acute-care hospitals: 2022 Update. Infect. Control Hosp. Epidemiol. 2022, 43, 553–569. [Google Scholar] [CrossRef]
- Venturini, E.; Montagnani, C.; Benni, A.; Becciani, S.; Biermann, K.P.; De Masi, S.; Chiappini, E.; de Martino, M.; Galli, L. Central-line associated bloodstream infections in a tertiary care children’s University hospital: A prospective study. BMC Infect. Dis. 2016, 16, 725. [Google Scholar] [CrossRef] [PubMed]
- Zorgani, A.; Abofayed, A.; Glia, A.; Albarbar, A.; Hanish, S. Prevalence of Device-associated Nosocomial Infections Caused By Gram-negative Bacteria in a Trauma Intensive Care Unit in Libya. Oman. Med. J. 2015, 30, 270–275. [Google Scholar] [CrossRef]
- Holma, T.; Torvikoski, J.; Friberg, N.; Nevalainen, A.; Tarkka, E.; Antikainen, J.; Martelin, J.J. Rapid molecular detection of pathogenic microorganisms and antimicrobial resistance markers in blood cultures: Evaluation and utility of the next-generation FilmArray Blood Culture Identification 2 panel. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Altun, O.; Almuhayawi, M.; Ullberg, M.; Özenci, V. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J. Clin. Microbiol. 2013, 51, 4130–4136. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Dhawan, B.; Kapil, A.; Kabra, S.K.; Suri, A.; Sreenivas, V.; Das, B.K. Coagulase-negative staphylococci causing blood stream infection at an Indian tertiary care hospital: Prevalence, antimicrobial resistance and molecular characterisation. Indian J. Med. Microbiol. 2016, 34, 500–505. [Google Scholar] [CrossRef]
- Kendirli, T.; Yaman, A.; Ödek, Ç.; Özdemir, H.; Karbuz, A.; Aldemir, B.; Güriz, H.; Ateş, C.; Özsoy, G.; Aysev, D.; et al. Central line-associated bloodstream infections in pediatric intensive care unit. Turkish J. Pediatr. Emerg. Intensive Care Med. 2017, 4, 42. [Google Scholar] [CrossRef]
- Dao, T.H.; Alsallaq, R.; Parsons, J.B.; Ferrolino, J.; Hayden, R.T.; Rubnitz, J.E.; Rafiqullah, I.M.; Robinson, D.A.; Margolis, E.B.; Rosch, J.W.; et al. Vancomycin heteroresistance and clinical outcomes in bloodstream infections caused by coagulase-negative staphylococci. Antimicrob. Agents Chem. 2020, 64, e00944-20. [Google Scholar] [CrossRef]
Gram-Stain | VITEK-2 | N | BCID2 | N |
---|---|---|---|---|
GPC | S. aureus | 4 | S. aureus | 5 |
S. hominis | 6 | Staphylococcus spp. | 18 | |
S. saprophyticus | 6 | - | - | |
S. hemolyticus | 3 | - | - | |
S. epidermidis | 16 | S. epidermidis | 16 | |
Streptococcus pneumoniae | 1 | Streptococcus pneumoniae | 0 | |
Streptococcus agalactia | 1 | Streptococcus spp. | 4 | |
Enterococcus faecium | 1 | Enterococcus faecium | 2 | |
Enterococcus faecalis | 2 | Enterococcus faecalis | 6 | |
Enterococcus spp. | 0 | Enterococcus spp. | 2 | |
Total GPC | 40 | 53 | ||
GNB | K. pneumoniae | 19 | K. pneumoniae | 19 |
A. baumannii | 5 | A. baumannii | 8 | |
E. coli | 13 | E. coli | 14 | |
P. aeruginosa | 3 | P. aeruginosa | 4 | |
Salmonella spp. | 0 | Salmonella spp. | 1 | |
Serratia marcescens | 3 | Serratia marcescens | 3 | |
Enterobacter cloacae | 2 | Enterobacter cloacae | 3 | |
Total GNB | 45 | 52 | ||
Yeast | Candida parapsilosis | 5 | Candida parapsilosis | 6 |
Candida auris | 2 | Candida auris | 5 | |
Candida glabrata | 1 | Candida glabrata | 2 | |
Candida albicans | 0 | Candida albicans | 2 | |
Candida troplicalis | 1 | Candida troplicalis | 1 | |
Total yeast | 9 | 16 |
Study No. | VITEK-2 Identification | BCID-2 Identification |
---|---|---|
1 | E. coli | K. pneumoniae, E. coli, Streptococcus pneumoniae, Salmonella spp. |
3 | K. pneumoniae | K. pneumoniae, A. baumannii |
8 | S. saprophyticus | S. epidermidis |
13 | S. hemoliticus | S. epidermidis |
24 | Pseudomonas aeruginosa | Pseudomonas aeruginosa, Enterococcus fecalis |
30 | K. pneumoniae | K. pneumoniae, A. baumannii |
31 | A. baumannii | A. baumannii, Staphylococcus spp. |
37 | E. coli | E. coli, Staphylococcus spp. |
40 | S. aureus | S. aureus, Enterococcus fecalis |
45 | S. hemoliticus | S. epidermidis |
49 | K. pneumoniae | K. pneumoniae, A. baumannii, Pseudomonas aeruginosa |
54 | K. pneumonia, E. coli | K. pneumoniae, E. coli, Staphylococcus spp., Enterococcus faecium, Candida glabrata |
55 | K. pneumoniae | K. pneumoniae, A. baumannii |
58 | K. pneumoniae | K. pneumoniae, Enterococcus faecalis |
60 | None | Candida auris, Candida parapsilosis |
61 | A. baumannii | A. baumannii, Staphylococcus spp. |
62 | Candida parapsilosis | Candida parapsilosis, Candida albicans |
64 | Candida parapsilosis | Candida parapsilosis, Candida tropicalis |
65 | K. pneumoniae | K. pneumoniae, E. coli |
67 | S. hominis | S. epidermidis |
68 | A. baumannii | A. baumannii, Candida auris |
74 | S. epidermidis | Staphylococcus spp., Candida albicans |
79 | Enterobacter cloacae | Enterobacter cloacae, Staphylococcus spp. |
81 | E. coli | S. aureus, E. coli |
83 | A. baumannii | Enterobacter cloacae |
99 | K. pneumoniae | K. pneumoniae, S. epidermidis, Enterococcus faecalis |
100 | K. pneumoniae | K. pneumoniae, Enterococcus faecalis |
102 | Candida parapsilosis | Candida parapsilosis, Candida auris |
Target Organism | NPA [95% CI] | PPA [95% CI] |
---|---|---|
S. aureus | 99% (94–99) | 100% (16.7–100) |
S. epidermidis | 92% (84–96) | 68.7% (44–86) |
Enterococcus spp. | 94% (87–97) | 100% (45–100) |
Candida spp. | 95.8% (89–98) | 100% (62–100) |
S. hominis | 100% (95.5–100) | 0 (0–4) |
S. saprophyticus | 100% (95–100) | 0 (0–48) |
S. hemolyticus | 100% (95–100) | 0 (0–48) |
K. pneumoniae | 98.9% (92.9–99) | 95% (74.5–100) |
E. coli | 90% (82–94.6) | 100% (74.8–100) |
Acinetobacter spp. | 95% (88.4–98) | 80% (36–98) |
Pseudomonas spp. | 99% (94–100) | 100% (38–100) |
Streptococcus spp. | 98% (92.7–100) | 100% (29–100) |
Salmonella spp. | 100% (95.6–100) | 100% (29–100) |
Serratia marscenes | 100% (95.6–100) | 100% (38.2–100) |
Enterobacter spp. | 98% (92.7–100) | 100% (29–100) |
Total pathogens | 98% (97–98.8) | 75.8% (66–83) |
Isolate | Resistance Genes Detected by BioFire BCID2 | ||||
---|---|---|---|---|---|
blaCTX-M | blaOXA-48 | mecA/C | mecA/C& MREJ | blaNDM | |
-Phenotypic 3rd generation Cephalosporin resistance | |||||
E. coli (n = 9) | 9 | 0 | 0 | 0 | 0 |
K. pneumoniae (n = 14) | 14 | 0 | 0 | 0 | 0 |
-Carbapenam resistant isolates | |||||
E. coli (n = 3) | 0 | 2 | 0 | 0 | 2 |
K. pneumoniae (n = 22) | 0 | 11 | 0 | 0 | 11 |
A. baumannii (n = 1) | 0 | 0 | 0 | 0 | 1 |
-Methicillin resistant isolates | |||||
S. aureus (n = 4) | 0 | 0 | 0 | 4 | 0 |
Staphylococcus spp. (n = 23) | 0 | 0 | 23 | 0 | 0 |
Study | VITEK-2 | BCID2 | |||
---|---|---|---|---|---|
Identification | Resistance Pattern | Identification | Concordant Identification | Resistance Gene Confirmation | |
5 | S. hominis | Cefoxitin (+) | Staphylococcus spp. | Yes | mecA/C (−) |
13 | S. haemolyticus | Cefoxitin (+) | S. epidermidis | No | mecA/C (−) |
18 | S. saprophyticus | Cefoxitin (+) | staphylococcus spp. | Yes | mecA/C (−) |
20 | S. Saprophyticus | Cefoxitin (+) | staphylococcus spp. | Yes | mecA/C (−) |
47 | S. haemolyticus | Cefoxitin (+) | staphylococcus spp. | Yes | mecA/C (−) |
50 | S. hominis | Cefoxitin (+) | staphylococcus spp. | Yes | mecA/C (−) |
7 | K. pneumoniae | ESBL (+) | K. pneumoniae | Yes | blaCTX-M (−) |
71 | E. coli | ESBL (+) | E. coli | Yes | blaCTX-M (−) |
81 | E. coli | ESBL (+) | E. coli | Yes | blaCTX-M (−) |
87 | E. coli | ESBL (+) | E. coli | Yes | blaCTX-M (−) |
Target Gene | Target Organism | NPA (95% CI) | PPA (95%CI) |
---|---|---|---|
blaOXA-48 | |||
E. coli | 99% (94–100) | 100% (16.7 100) | |
K. pneumoniae | 99% (93.6–100) | 100% (67.9–100) | |
Acinetobacter spp. | 100% (95.7–100) | ND | |
blaNDM | |||
E. coli | 99% (94–100) | 100% (16.7–100) | |
K. pneumoniae | 100% (95.2–100) | 100% (69.9–100) | |
Acinetobacter spp. | 100% (95.6–100) | 100% (16.7–100) | |
blaCTX-M | |||
E. coli | 100% (95.2–100) | 75% (46.1–91.7) | |
K. pneumoniae | 99% (93.3–100) | 86.6(60.8–97.5) | |
mecA/C | |||
S. aureus | 100% (95.7–100) | ND | |
Staphylococcus spp. | 100% (94.1–100) | 100% (83–100) | |
MecA/C and MERJ | |||
S. aureus | 100% (95.5–100) | 100% (45–100%) | |
Staphylococcus spp. | 100% (95.7–100) | ND | |
Total | 99.6% (99–100) | 90% (81.4–95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Sherif, H.M.; Elsayed, M.; El-Ansary, M.R.; Aboshanab, K.M.; El Borhamy, M.I.; Elsayed, K.M. BioFire FilmArray BCID2 versus VITEK-2 System in Determining Microbial Etiology and Antibiotic-Resistant Genes of Pathogens Recovered from Central Line-Associated Bloodstream Infections. Biology 2022, 11, 1573. https://doi.org/10.3390/biology11111573
El Sherif HM, Elsayed M, El-Ansary MR, Aboshanab KM, El Borhamy MI, Elsayed KM. BioFire FilmArray BCID2 versus VITEK-2 System in Determining Microbial Etiology and Antibiotic-Resistant Genes of Pathogens Recovered from Central Line-Associated Bloodstream Infections. Biology. 2022; 11(11):1573. https://doi.org/10.3390/biology11111573
Chicago/Turabian StyleEl Sherif, Heba M., Mahitab Elsayed, Mona R. El-Ansary, Khaled M. Aboshanab, Mervat I. El Borhamy, and Khaled M. Elsayed. 2022. "BioFire FilmArray BCID2 versus VITEK-2 System in Determining Microbial Etiology and Antibiotic-Resistant Genes of Pathogens Recovered from Central Line-Associated Bloodstream Infections" Biology 11, no. 11: 1573. https://doi.org/10.3390/biology11111573
APA StyleEl Sherif, H. M., Elsayed, M., El-Ansary, M. R., Aboshanab, K. M., El Borhamy, M. I., & Elsayed, K. M. (2022). BioFire FilmArray BCID2 versus VITEK-2 System in Determining Microbial Etiology and Antibiotic-Resistant Genes of Pathogens Recovered from Central Line-Associated Bloodstream Infections. Biology, 11(11), 1573. https://doi.org/10.3390/biology11111573