Effects of Knee Extension Joint Angle on Quadriceps Femoris Muscle Activation and Exerted Torque in Maximal Voluntary Isometric Contraction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Familiarization and Settings
2.3. Testing Procedure
2.4. Electrode Placement and EMG Signal Acquisition and Processing
2.5. Normalization
2.6. Variables
- Torque—Normalized torque from each MVIC with respect to the highest torque obtained by each participant, expressed in %;
- VLRMS—Normalized RMS of VL with respect to maximal RMS, expressed in %;
- VMRMS—Normalized RMS of VM with respect to maximal RMS, expressed in %;
- ΔVLRMS—RMS of VL relative to exerted torque in the corresponding knee angle, expressed in %;
- ΔVMRMS—RMS of VM relative to exerted torque in the corresponding knee angle, expressed in %.
2.7. Statistical Procedures
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power: Part 1—Biological Basis of Maximal Power Production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef]
- Enoka, R.M.; Duchateau, J. Inappropriate Interpretation of Surface EMG Signals and Muscle Fiber Characteristics Impedes Understanding of the Control of Neuromuscular Function. J. Appl. Physiol. 2015, 119, 1516–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maganaris, C.N. Force-Length Characteristics of in Vivo Human Skeletal Muscle. Acta Physiol. Scand. 2001, 172, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Buchanan, T.S. Prediction of Joint Moments Using a Neural Network Model of Muscle Activations from EMG Signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M. Neuromechanics of Human Movement; Human Kinetics: Champaign, IL, USA, 2008; ISBN 978-0-7360-6679-2. [Google Scholar]
- Anderson, D.E.; Madigan, M.L.; Nussbaum, M.A. Maximum Voluntary Joint Torque as a Function of Joint Angle and Angular Velocity: Model Development and Application to the Lower Limb. J. Biomech. 2007, 40, 3105–3113. [Google Scholar] [CrossRef]
- Marginson, V.; Eston, R. The Relationship between Torque and Joint Angle during Knee Extension in Boys and Men. J. Sport. Sci. 2001, 19, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Hamner, S.R.; Seth, A.; Delp, S.L. Muscle Contributions to Propulsion and Support during Running. J. Biomech. 2010, 43, 2709–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moxley Scarborough, D.; Krebs, D.E.; Harris, B.A. Quadriceps Muscle Strength and Dynamic Stability in Elderly Persons. Gait Posture 1999, 10, 10–20. [Google Scholar] [CrossRef]
- Mengarelli, A.; Gentili, A.; Strazza, A.; Burattini, L.; Fioretti, S.; Di Nardo, F. Co-Activation Patterns of Gastrocnemius and Quadriceps Femoris in Controlling the Knee Joint during Walking. J. Electromyogr. Kinesiol. 2018, 42, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Scurr, J.C.; Abbott, V.; Ball, N. Quadriceps EMG Muscle Activation during Accurate Soccer Instep Kicking. J. Sport. Sci. 2011, 29, 247–251. [Google Scholar] [CrossRef] [PubMed]
- El-Ansary, D.; Marshall, C.J.; Farragher, J.; Annoni, R.; Schwank, A.; McFarlane, J.; Bryant, A.; Han, J.; Webster, M.; Zito, G.; et al. Architectural Anatomy of the Quadriceps and the Relationship with Muscle Strength: An Observational Study Utilising Real-Time Ultrasound in Healthy Adults. J. Anat. 2021, 239, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.Z.F.; Daehlin, T.E. Three-Dimensional Modelling of Human Quadriceps Femoris Forces. J. Biomech. 2021, 120, 110347. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Akima, H. Knee Joint Angle Affects EMG-Force Relationship in the Vastus Intermedius Muscle. J. Electromyogr. Kinesiol. 2013, 23, 1406–1412. [Google Scholar] [CrossRef]
- Akima, H.; Tomita, A.; Ando, R. Effect of Knee Joint Angle on the Neuromuscular Activation of the Quadriceps Femoris during Repetitive Fatiguing Contractions. J. Electromyogr. Kinesiol. 2019, 49, 102356. [Google Scholar] [CrossRef] [PubMed]
- Morelli, I.; Maffulli, N.; Brambilla, L.; Agnoletto, M.; Peretti, G.M.; Mangiavini, L. Quadriceps Muscle Group Function and after Total Knee Arthroplasty—Asystematic Narrative Update. Br. Med. Bull. 2021, 137, 51–69. [Google Scholar] [CrossRef] [PubMed]
- Madeti, B.K.; Chalamalasetti, S.R.; Bolla Pragada, S.K.S. Siva rao Biomechanics of Knee Joint—A Review. Front. Mech. Eng. 2015, 10, 176–186. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Cannavan, D.; Horne, S.; Coleman, D.R.; Aagaard, P. Changes in Muscle Force–Length Properties Affect the Early Rise of Force in Vivo. Muscle Nerve 2009, 39, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Gheller, R.G.; Dal Pupo, J.; Ache-Dias, J.; Detanico, D.; Padulo, J.; dos Santos, S.G. Effect of Different Knee Starting Angles on Intersegmental Coordination and Performance in Vertical Jumps. Hum. Mov. Sci. 2015, 42, 71–80. [Google Scholar] [CrossRef]
- Hartmann, H.; Wirth, K.; Klusemann, M. Analysis of the Load on the Knee Joint and Vertebral Column with Changes in Squatting Depth and Weight Load. Sports Med. 2013, 43, 993–1008. [Google Scholar] [CrossRef] [PubMed]
- Bezodis, N.E.; Willwacher, S.; Salo, A.I.T. The Biomechanics of the Track and Field Sprint Start: A Narrative Review. Sports Med. 2019, 49, 1345–1364. [Google Scholar] [CrossRef]
- Brown, S.R.; Brughelli, M.; Hume, P.A. Knee Mechanics during Planned and Unplanned Sidestepping: A Systematic Review and Meta-Analysis. Sports Med. 2014, 44, 1573–1588. [Google Scholar] [CrossRef] [PubMed]
- Bini, R.; Hume, P.A.; Croft, J.L. Effects of Bicycle Saddle Height on Knee Injury Risk and Cycling Performance. Sports Med. 2011, 41, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for Noncontact Anterior Cruciate Ligament Injuries: Knee Joint Kinematics in 10 Injury Situations from Female Team Handball and Basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef]
- Young, W.B. Transfer of Strength and Power Training to Sports Performance. Int. J. Sports Physiol. Perform. 2006, 1, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Ema, R.; Sakaguchi, M.; Akagi, R.; Kawakami, Y. Unique Activation of the Quadriceps Femoris during Single- and Multi-Joint Exercises. Eur. J. Appl. Physiol. 2016, 116, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, C.; Allen, E.J.; Williams, G.N. Effect of Knee Position on Quadriceps Muscle Force Steadiness and Activation Strategies. Muscle Nerve 2011, 43, 563–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Akima, H. Effect of Knee Joint Angle on Neuromuscular Activation of the Vastus Intermedius Muscle during Isometric Contraction. Scand. J. Med. Sci. Sports 2011, 21, e412–e420. [Google Scholar] [CrossRef] [PubMed]
- Babault, N.; Pousson, M.; Michaut, A.; Van Hoecke, J. Effect of Quadriceps Femoris Muscle Length on Neural Activation during Isometric and Concentric Contractions. J. Appl. Physiol. 2003, 94, 983–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.R. The Declaration of Helsinki and Public Health. Bull. World Health Organ. 2008, 86, 650–652. [Google Scholar] [CrossRef]
- Kukić, F.; Stanković, A.; Mrdaković, V.; Ilić, D.; Ubović, M. Intra-Session and Inter-Session Reliability of Electromyography in Leg Extension during Maximum Voluntary Isometric Contractions of Quadriceps: The Effect of Knee Angle. Fiz. Kult. 2017, 71, 99–110. [Google Scholar] [CrossRef]
- Stanković, A.; Mrdaković, V. Pouzdanost Testova Za Procenu Maksimalne Izometrijske Mišićne Sile i Brzine Prirasta Sile m. Quadriceps Femoris-a u Otvorenom i Zatvorenom Kinetičkom Lancu u Zavisnosti Od Promene Ugla u Zglobu Kolena. Godišnjak Fak. Sport. I Fizičkog Vaspitanja 2014, 24–60. [Google Scholar]
- Criswell, E. Cram’s Introduction to Surface Electromyography; Jones & Bartlett Publishers: Burlington, MA, USA, 2010; ISBN 978-1-4496-6362-9. [Google Scholar]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG Detection in Space and Time: Best Practices. J. Electromyogr. Kinesiol. 2019, 49, 102363. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J. Surface Electromyography: Detection and Recording. DelSys Inc. 2002, 10, 1–10. [Google Scholar]
- Luca, C.J.D. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Doheny, E.P.; Lowery, M.M.; Fitzpatrick, D.P.; O’Malley, M.J. Effect of Elbow Joint Angle on Force-EMG Relationships in Human Elbow Flexor and Extensor Muscles. J. Electromyogr. Kinesiol. 2008, 18, 760–770. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Kuriki, H.U.; de Azevedo, F.M.; Takahashi, L.S.O.; Mello, E.M.; de Faria Negrão Filho, R.; Alves, N. The Relationship Between Electromyography and Muscle Force. EMG Methods Eval. Muscle Nerve Funct. 2012. [Google Scholar] [CrossRef] [Green Version]
- Gerus, P.; Sartori, M.; Besier, T.F.; Fregly, B.J.; Delp, S.L.; Banks, S.A.; Pandy, M.G.; D’Lima, D.D.; Lloyd, D.G. Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces. J. Biomech. 2013, 46, 2778–2786. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Cockburn, R.A.; Hemmerich, A.; Li, R.M.; Wyss, U.P. Tibiofemoral Joint Contact Forces and Knee Kinematics during Squatting. Gait Posture 2008, 27, 376–386. [Google Scholar] [CrossRef]
- Nagura, T.; Dyrby, C.O.; Alexander, E.J.; Andriacchi, T.P. Mechanical Loads at the Knee Joint during Deep Flexion. J. Orthop. Res. 2002, 20, 881–886. [Google Scholar] [CrossRef]
- Savelberg, H.H.C.M.; Meijer, K. Contribution of Mono- and Biarticular Muscles to Extending Knee Joint Moments in Runners and Cyclists. J. Appl. Physiol. 2003, 94, 2241–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipp, K.; Redden, J.; Sabick, M.B.; Harris, C. Weightlifting Performance Is Related to Kinematic and Kinetic Patterns of the Hip and Knee Joints. J. Strength Cond. Res. 2012, 26, 1838–1844. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, Y.; Kawakami, Y.; Ito, M.; Fukunaga, T. Estimation of Active Force-Length Characteristics of Human Vastus Lateralis Muscle. CTO 1997, 159, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Cescon, C.; Merletti, R. Influence of Anatomical, Physical, and Detection-System Parameters on Surface EMG. Biol. Cybern. 2002, 86, 445–456. [Google Scholar] [CrossRef]
- Macefield, V.G.; Knellwolf, T.P. Functional Properties of Human Muscle Spindles. J. Neurophysiol. 2018, 120, 452–467. [Google Scholar] [CrossRef]
- Dimitriou, M. Human Muscle Spindles Are Wired to Function as Controllable Signal-Processing Devices. eLife 2022, 11, e78091. [Google Scholar] [CrossRef]
- Kistemaker, D.A.; Van Soest, A.J.K.; Wong, J.D.; Kurtzer, I.; Gribble, P.L. Control of Position and Movement Is Simplified by Combined Muscle Spindle and Golgi Tendon Organ Feedback. J. Neurophysiol. 2013, 109, 1126–1139. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, K.C.; Monroy, J.A.; Tahir, U. Muscle Function from Organisms to Molecules. Integr. Comp. Biol. 2018, 58, 194–206. [Google Scholar] [CrossRef] [Green Version]
- Moo, E.K.; Leonard, T.R.; Herzog, W. The Sarcomere Force–Length Relationship in an Intact Muscle–Tendon Unit. J. Exp. Biol. 2020, 223, jeb215020. [Google Scholar] [CrossRef]
Variable | 80° | 90° | 100° | 110° | 120° | 130° |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Torque (%) ** | 61.51 ± 7.70 | 69.30 ± 9.82 | 87.57 ± 9.81 | 96.88 ± 3.99 | 93.46 ± 6.30 | 87.63 ± 9.34 |
VLRMS (%) | 70.65 ± 22.49 | 70.44 ± 20.68 | 62.14 ± 15.70 | 69.80 ± 25.29 | 72.11 ±20.43 | 71.52 ± 24.11 |
VMRMS (%) | 68.06 ± 19.61 | 71.04 ± 28.24 | 73.94 ± 20.30 | 82.08 ± 15.56 | 82.27 ± 12.95 | 73.48 ± 18.82 |
ΔVLRMS (%) † | 52.14 ± 45.21 | 43.53 ± 29.21 | 31.54 ± 21.32 | 32.23 ± 23.65 | 35.83 ± 27.54 | 35.22 ± 25.29 |
ΔVMRMS (%) | 38.21 ± 31.91 | 34.87 ± 29.58 | 27.69 ± 17.39 | 26.38 ± 13.17 | 27.15 ± 11.83 | 26.19 ± 13.80 |
Pairwise Comparison | Mean Difference | 95% CI for Mean Difference | ||
---|---|---|---|---|
Lower | Upper | |||
80° | 90° | −7.79% | −19.7 | 4.1 |
100° | −26.05% | −37.9 | −14.2 | |
110° | −35.37% | −47.3 | −23.5 | |
120° | −31.95% | −43.8 | −20.1 | |
130° | −26.12% | −38.0 | −14.2 | |
90° | 100° | −18.26% | −30.1 | −6.4 |
110° | −27.58% | −39.5 | −15.7 | |
120° | −24.17% | −36.1 | −12.3 | |
130° | −18.33% | −30.2 | −6.5 | |
100° | 110° | −9.32% | −21.2 | 2.6 |
120° | −5.90% | −17.8 | 6.0 | |
130° | −0.07% | −11.9 | 11.8 | |
110° | 120° | 3.41% | −8.5 | 15.3 |
130° | 9.25% | −2.6 | 21.1 | |
120° | 130° | 5.83% | −6.1 | 17.7 |
Pairwise Comparison | Mean Difference | 95% CI for Mean Difference | ||
---|---|---|---|---|
Lower | Upper | |||
80° | 90° | 8.44% | −18.57 | 35.46 |
100° | 20.56% | −6.46 | 47.57 | |
110° | 19.67% | −7.35 | 46.68 | |
120° | 16.22% | −10.80 | 43.24 | |
130° | 17.00% | −10.02 | 44.02 | |
90° | 100° | 12.11% | −14.91 | 39.13 |
110° | 11.22% | −15.80 | 38.24 | |
120° | 7.78% | −19.24 | 34.80 | |
130° | 8.56% | −18.46 | 35.57 | |
100° | 110° | -0.89% | −27.91 | 26.13 |
120° | −4.33% | −31.35 | 22.68 | |
130° | −3.56% | −30.57 | 23.46 | |
110° | 120° | −3.44% | −30.46 | 23.57 |
130° | −2.67% | −29.68 | 24.35 | |
120° | 130° | 0.78% | −26.24 | 27.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukić, F.; Mrdaković, V.; Stanković, A.; Ilić, D. Effects of Knee Extension Joint Angle on Quadriceps Femoris Muscle Activation and Exerted Torque in Maximal Voluntary Isometric Contraction. Biology 2022, 11, 1490. https://doi.org/10.3390/biology11101490
Kukić F, Mrdaković V, Stanković A, Ilić D. Effects of Knee Extension Joint Angle on Quadriceps Femoris Muscle Activation and Exerted Torque in Maximal Voluntary Isometric Contraction. Biology. 2022; 11(10):1490. https://doi.org/10.3390/biology11101490
Chicago/Turabian StyleKukić, Filip, Vladimir Mrdaković, Aleksandar Stanković, and Duško Ilić. 2022. "Effects of Knee Extension Joint Angle on Quadriceps Femoris Muscle Activation and Exerted Torque in Maximal Voluntary Isometric Contraction" Biology 11, no. 10: 1490. https://doi.org/10.3390/biology11101490
APA StyleKukić, F., Mrdaković, V., Stanković, A., & Ilić, D. (2022). Effects of Knee Extension Joint Angle on Quadriceps Femoris Muscle Activation and Exerted Torque in Maximal Voluntary Isometric Contraction. Biology, 11(10), 1490. https://doi.org/10.3390/biology11101490