Influence of Rigor Mortis on Tendon Mobility in an Animal Fresh Cadaver Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen and Preparation
2.2. Measurement of Mobility
2.3. Test Protocol
2.3.1. Test Cycle
2.3.2. Rigor Mortis Evaluation
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davidson, P.A.; Rivenburgh, D.W. Rotator cuff repair tension as a determinant of functional outcome. J. Shoulder Elbow Surg. 2000, 9, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Gerber, C.; Meyer, D.C.; Schneeberger, A.G.; Hoppeler, H.; von Rechenberg, B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: An experimental study in sheep. J. Bone Jt. Surg. Am. 2004, 86, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Porschke, F.; Nolte, P.C.; Knye, C.; Weiss, C.; Studier-Fischer, S.; Gruetzner, P.A.; Guehring, T.; Schnetzke, M. Does the Interval Slide Procedure Reduce Supraspinatus Tendon Repair Tension?: A Biomechanical Cadaveric Study. Orthop. J. Sports Med. 2022, 10, 23259671211066887. [Google Scholar] [CrossRef] [PubMed]
- Porschke, F.; Schnetzke, M.; Luecke, C.; Weiss, C.; Studier-Fischer, S.; Gruetzner, P.A.; Guehring, T. Biomechanical analysis of the interval slide procedure: A fresh porcine cadaver study. Arch. Orthop. Trauma Surg. 2022, 49, 617–626. [Google Scholar] [CrossRef]
- Hatakeyama, Y.; Itoi, E.; Urayama, M.; Pradhan, R.L.; Sato, K. Effect of superior capsule and coracohumeral ligament release on strain in the repaired rotator cuff tendon. A cadaveric study. Am. J. Sports Med. 2001, 29, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Domnick, C.; Wieskotter, B.; Raschke, M.J.; Schulze, M.; Kronenberg, D.; Wefelmeier, M.; Langer, M.F.; Herbort, M. Evaluation of biomechanical properties: Are porcine flexor tendons and bovine extensor tendons eligible surrogates for human tendons in in vitro studies? Arch. Orthop. Trauma Surg. 2016, 136, 1465–1471. [Google Scholar] [CrossRef]
- Halder, A.; Zobitz, M.E.; Schultz, F.; An, K.N. Mechanical properties of the posterior rotator cuff. Clin. Biomech. 2000, 15, 456–462. [Google Scholar] [CrossRef]
- Itoi, E.; Berglund, L.J.; Grabowski, J.J.; Schultz, F.M.; Growney, E.S.; Morrey, B.F.; An, K.N. Tensile properties of the supraspinatus tendon. J. Orthop. Res. 1995, 13, 578–584. [Google Scholar] [CrossRef]
- Fessel, G.; Frey, K.; Schweizer, A.; Calcagni, M.; Ullrich, O.; Snedeker, J.G. Suitability of Thiel embalmed tendons for biomechanical investigation. Ann. Anat. 2011, 193, 237–241. [Google Scholar] [CrossRef]
- Clavert, P.; Kempf, J.F.; Bonnomet, F.; Boutemy, P.; Marcelin, L.; Kahn, J.L. Effects of freezing/thawing on the biomechanical properties of human tendons. Surg. Radiol. Anat. 2001, 23, 259–262. [Google Scholar] [CrossRef]
- Gottsauner-Wolf, F.; Grabowski, J.J.; Chao, E.Y.; An, K.N. Effects of freeze/thaw conditioning on the tensile properties and failure mode of bone-muscle-bone units: A biomechanical and histological study in dogs. J. Orthop. Res. 1995, 13, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Leitschuh, P.H.; Doherty, T.J.; Taylor, D.C.; Brooks, D.E.; Ryan, J.B. Effects of postmortem freezing on tensile failure properties of rabbit extensor digitorum longus muscle tendon complex. J. Orthop. Res. 1996, 14, 830–833. [Google Scholar] [CrossRef]
- Porschke, F.; Luecke, C.; Guehring, T.; Weiss, C.; Studier-Fischer, S.; Gruetzner, P.A.; Schnetzke, M. Mobility Assessment of the Supraspinatus in a Porcine Cadaver Model Using a Sensor-Enhanced, Arthroscopic Grasper. Ann. Biomed. Eng. 2021, 49, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Gimbel, J.A.; Van Kleunen, J.P.; Mehta, S.; Perry, S.M.; Williams, G.R.; Soslowsky, L.J. Supraspinatus tendon organizational and mechanical properties in a chronic rotator cuff tear animal model. J. Biomech. 2004, 37, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Soslowsky, L.J.; Carpenter, J.E.; DeBano, C.M.; Banerji, I.; Moalli, M.R. Development and use of an animal model for investigations on rotator cuff disease. J. Shoulder Elbow Surg. 1996, 5, 383–392. [Google Scholar] [CrossRef]
- Kim, D.H.; Jang, Y.H.; Choi, Y.E.; Lee, H.R.; Kim, S.H. Evaluation of Repair Tension in Arthroscopic Rotator Cuff Repair: Does It Really Matter to the Integrity of the Rotator Cuff? Am. J. Sports Med. 2016, 44, 2807–2812. [Google Scholar] [CrossRef]
- Park, S.G.; Shim, B.J.; Seok, H.G. How Much Will High Tension Adversely Affect Rotator Cuff Repair Integrity? Arthroscopy 2019, 35, 2992–3000. [Google Scholar] [CrossRef]
- Krompecher, T. Experimental evaluation of rigor mortis. VIII. Estimation of time since death by repeated measurements of the intensity of rigor mortis on rats. Forensic Sci. Int. 1994, 68, 149–159. [Google Scholar] [CrossRef]
- Krompecher, T.; Fryc, O. Experimental evaluation of rigor mortis. III. Comparative study of the evolution of rigor mortis in different sized muscle groups in rats. Forensic Sci. Int. 1978, 12, 97–102. [Google Scholar] [CrossRef]
- Krompecher, T.; Krompecher-Kiss, E. Experimental evaluation of rigor mortis. I. Histochemical analysis of rat skeletal muscle in the early post-mortem period. Forensic Sci. Int. 1978, 12, 89–95. [Google Scholar] [CrossRef]
- Van Ee, C.A.; Chasse, A.L.; Myers, B.S. Quantifying skeletal muscle properties in cadaveric test specimens: Effects of mechanical loading, postmortem time, and freezer storage. J. Biomech. Eng. 2000, 122, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Takatori, T.; Nakajima, M.; Sakurada, K.; Hatanaka, K.; Ikegaya, H.; Matsuda, Y.; Iwase, H. Onset of rigor mortis is earlier in red muscle than in white muscle. Int. J. Legal Med. 2000, 113, 240–243. [Google Scholar] [CrossRef] [PubMed]
Time pm (Test Cycle) | Force in N | Standard Deviation in N |
---|---|---|
103 min (t1) | 28.02 | 11.19 |
119 min (t2) | 28.99 | 13.00 |
135 min (t3) | 29.63 | 12.96 |
151 min (t4) | 30.24 | 13.70 |
167 min (t5) | 31.08 | 13.87 |
197 min (t6) | 32.48 | 14.78 |
227 min (t7) | 35.54 | 16.30 |
257 min (t8) | 35.78 | 16.49 |
287 min (t9) | 35.08 | 15.62 |
317 min (t10) | 34.28 | 16.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luecke, C.; Schnetzke, M.; Weiss, C.; Studier-Fischer, S.; Guehring, T.; Gruetzner, P.A.; Porschke, F. Influence of Rigor Mortis on Tendon Mobility in an Animal Fresh Cadaver Model. Biology 2022, 11, 1381. https://doi.org/10.3390/biology11101381
Luecke C, Schnetzke M, Weiss C, Studier-Fischer S, Guehring T, Gruetzner PA, Porschke F. Influence of Rigor Mortis on Tendon Mobility in an Animal Fresh Cadaver Model. Biology. 2022; 11(10):1381. https://doi.org/10.3390/biology11101381
Chicago/Turabian StyleLuecke, Christoph, Marc Schnetzke, Christel Weiss, Stefan Studier-Fischer, Thorsten Guehring, Paul A. Gruetzner, and Felix Porschke. 2022. "Influence of Rigor Mortis on Tendon Mobility in an Animal Fresh Cadaver Model" Biology 11, no. 10: 1381. https://doi.org/10.3390/biology11101381
APA StyleLuecke, C., Schnetzke, M., Weiss, C., Studier-Fischer, S., Guehring, T., Gruetzner, P. A., & Porschke, F. (2022). Influence of Rigor Mortis on Tendon Mobility in an Animal Fresh Cadaver Model. Biology, 11(10), 1381. https://doi.org/10.3390/biology11101381