Atoh8 in Development and Disease
Abstract
:Simple Summary
Abstract
1. Introduction
2. Atoh8
2.1. Atoh8 in Development
2.1.1. Atoh8 in Early Embryonic Development
2.1.2. Atoh8 in Neurogenesis
2.1.3. Atoh8 in Kidney Development
2.1.4. Atoh8 in Pancreas Development
2.1.5. Atoh8 in Skeletal Muscle Development
2.1.6. Atoh8 in Heart Development
2.1.7. Atoh8 in Cartilage and Bone Development
2.1.8. Atoh8 in Placenta Development
2.2. Atoh8 in Disease
2.2.1. Atoh8 in Cancer
2.2.2. Atoh8 in Cellular Homeostasis
3. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, S. An Overview of the Basic Helix-Loop-Helix Proteins. Genome Biol. 2004, 5, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atchley, W.R.; Fitch, W.M. A Natural Classification of the Basic Helix–Loop–Helix Class of Transcription Factors. Proc. Natl. Acad. Sci. USA 1997, 94, 5172–5176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledent, V.; Paquet, O.; Vervoort, M. Phylogenetic Analysis of the Human Basic Helix-Loop-Helix Proteins. Genome Biol. 2002, 3, research0030.1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.E. Basic Helix-Loop-Helix Genes in Neural Development. Curr. Opin. Neurobiol. 1997, 7, 13–20. [Google Scholar] [CrossRef]
- Srivastava, D.; Olson, E.N. Knowing in Your Heart What’s Right. Trends Cell Biol. 1997, 7, 447–453. [Google Scholar] [CrossRef]
- Weintraub, H.; Dwarki, V.J.; Verma, I.; Davis, R.; Hollenberg, S.; Snider, L.; Lassar, A.; Tapscott, S.J. Muscle-Specific Transcriptional Activation by MyoD. Gene Dev. 1991, 5, 1377–1386. [Google Scholar] [CrossRef] [Green Version]
- Grandori, C.; Cowley, S.M.; James, L.P.; Eisenman, R.N. The Myc/Max/Mad Network and the Transcriptional Control of Cell Behavior. Annu. Rev. Cell Dev. Biol. 2000, 16, 653–699. [Google Scholar] [CrossRef] [PubMed]
- Fairman, R.; Beran-Steed, R.K.; Anthony-Cahill, S.J.; Lear, J.D.; Stafford, W.F.; DeGrado, W.F.; Benfield, P.A.; Brenner, S.L. Multiple Oligomeric States Regulate the DNA Binding of Helix-Loop-Helix Peptides. Proc. Natl. Acad. Sci. USA 1993, 90, 10429–10433. [Google Scholar] [CrossRef] [Green Version]
- Simionato, E.; Ledent, V.; Richards, G.; Thomas-Chollier, M.; Kerner, P.; Coornaert, D.; Degnan, B.M.; Vervoort, M. Origin and Diversification of the Basic Helix-Loop-Helix Gene Family in Metazoans: Insights from Comparative Genomics. BMC Evol. Biol. 2007, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, K.; Yao, Q.; Zheng, X.; Yang, Z. Phylogenetic Analysis of Zebrafish Basic Helix-Loop-Helix Transcription Factors. J. Mol. Evol. 2009, 68, 629–640. [Google Scholar] [CrossRef]
- Inoue, C.; Bae, S.; Takatsuka, K.; Inoue, T.; Bessho, Y.; Kageyama, R. Math6, a BHLH Gene Expressed in the Developing Nervous System, Regulates Neuronal versus Glial Differentiation. Genes Cells 2001, 6, 977–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Dai, F.; Balakrishnan-Renuka, A.; Leese, F.; Schempp, W.; Schaller, F.; Hoffmann, M.M.; Morosan-Puopolo, G.; Yusuf, F.; Bisschoff, I.; et al. Diversification and Molecular Evolution of ATOH8, a Gene Encoding a BHLH Transcription Factor. PLoS ONE 2011, 6, e23005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Huang, S.; Dong, X.; Chen, Y.; Li, M.; Shi, W.; Wang, G.; Huang, C.; Wang, Q.; Liu, Y.; et al. A Novel Isoform of ATOH8 Promotes the Metastasis of Breast Cancer by Regulating RhoC. J. Mol. Cell Biol. 2020, 13, 59–71. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; de Beer, T.A.P.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository—New Features and Functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Balakrishnan-Renuka, A.; Napirei, M.; Theiss, C.; Brand-Saberi, B. Spatiotemporal Expression of Math6 during Mouse Embryonic Development. Histochem. Cell Biol. 2015, 143, 575–582. [Google Scholar] [CrossRef]
- Swingler, T.E.; Bess, K.L.; Yao, J.; Stifani, S.; Jayaraman, P.-S. The Proline-Rich Homeodomain Protein Recruits Members of the Groucho/Transducin-like Enhancer of Split Protein Family to Co-Repress Transcription in Hematopoietic Cells. J. Biol. Chem. 2004, 279, 34938–34947. [Google Scholar] [CrossRef] [Green Version]
- Venot, C.; Maratrat, M.; Dureuil, C.; Conseiller, E.; Bracco, L.; Debussche, L. The Requirement for the P53 Proline-Rich Functional Domain for Mediation of Apoptosis Is Correlated with Specific PIG3 Gene Transactivation and with Transcriptional Repression. EMBO J. 1998, 17, 4668–4679. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Agnès, F.; Gélinas, C. Mapping of a Serine-Rich Domain Essential for the Transcriptional, Antiapoptotic, and Transforming Activities of the v-Rel Oncoprotein. Mol. Cell Biol. 2001, 21, 7115. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Balakrishnan-Renuka, A.; Hagemann, N.; Theiss, C.; Chankiewitz, V.; Chen, J.; Pu, Q.; Erdmann, K.S.; Brand-Saberi, B. A Novel Interaction between ATOH8 and PPP3CB. Histochem. Cell Biol. 2016, 145, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Divvela, S.; Nell, P.; Napirei, M.; Zaehres, H.; Chen, J.; Gerding, W.; Nguyen, H.; Gao, S.; Brand-Saberi, B. BHLH Transcription Factor Math6 Antagonizes TGF-β Signalling in Reprogramming, Pluripotency and Early Cell Fate Decisions. Cells 2019, 8, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, F.; Wasserman, S.M.; Torres-Vazquez, J.; Weinstein, B.; Cao, F.; Li, Z.; Wilson, K.D.; Yue, W.; Wu, J.C.; Xie, X.; et al. The Role of Hath6, a Newly Identified Shear-Stress-Responsive Transcription Factor, in Endothelial Cell Differentiation and Function. J. Cell Sci. 2014, 127, 1428–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Pan, G.; Chen, L.; Ma, S.; Zeng, T.; Chan, T.; Li, L.; Lian, Q.; Chow, R.; Cai, X.; et al. Loss of ATOH8 Increases Stem Cell Features of Hepatocellular Carcinoma Cells. Gastroenterology 2015, 149, 1068–1081.e5. [Google Scholar] [CrossRef]
- Mittnenzweig, M.; Mayshar, Y.; Cheng, S.; Ben-Yair, R.; Hadas, R.; Rais, Y.; Chomsky, E.; Reines, N.; Uzonyi, A.; Lumerman, L.; et al. A Single-Embryo, Single-Cell Time-Resolved Model for Mouse Gastrulation. Cell 2021, 184, 2825–2842.e22. [Google Scholar] [CrossRef]
- Pijuan-Sala, B.; Griffiths, J.A.; Guibentif, C.; Hiscock, T.W.; Jawaid, W.; Calero-Nieto, F.J.; Mulas, C.; Ibarra-Soria, X.; Tyser, R.C.V.; Ho, D.L.L.; et al. A Single-Cell Molecular Map of Mouse Gastrulation and Early Organogenesis. Nature 2019, 566, 490–495. [Google Scholar] [CrossRef]
- Bergstrom, D.A.; Tapscott, S.J. Molecular Distinction between Specification and Differentiation in the Myogenic Basic Helix-Loop-Helix Transcription Factor Family. Mol. Cell. Biol. 2001, 21, 2404–2412. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, R.; Ohtsuka, T.; Hatakeyama, J.; Ohsawa, R. Roles of BHLH Genes in Neural Stem Cell Differentiation. Exp. Cell Res. 2005, 306, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, H.; Zhang, L.; Xiong, S.; Wen, S.; Xia, X.; Zhou, X. Growth/Differentiation 5 Promotes the Differentiation of Retinal Stem Cells into Neurons via Atoh8. J. Cell. Physiol. 2019, 234, 21307–21315. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.D.; Martinka, S.; Mukherjee, A.; Sedor, J.R.; Vinson, C.; Bruggeman, L.A. Math6 Expression during Kidney Development and Altered Expression in a Mouse Model of Glomerulosclerosis. Dev. Dyn. 2006, 235, 3102–3109. [Google Scholar] [CrossRef] [Green Version]
- Vrljicak, P.; Myburgh, D.; Ryan, A.K.; van Rooijen, M.A.; Mummery, C.L.; Gupta, I.R. Smad Expression during Kidney Development. Am. J. Physiol.-Ren. Physiol. 2004, 286, F625–F633. [Google Scholar] [CrossRef] [Green Version]
- Lynn, F.C.; Sanchez, L.; Gomis, R.; German, M.S.; Gasa, R. Identification of the BHLH Factor Math6 as a Novel Component of the Embryonic Pancreas Transcriptional Network. PLoS ONE 2008, 3, e2430. [Google Scholar] [CrossRef] [Green Version]
- Serafimidis, I.; Rakatzi, I.; Episkopou, V.; Gouti, M.; Gavalas, A. Novel Effectors of Directed and Ngn3-Mediated Differentiation of Mouse Embryonic Stem Cells into Endocrine Pancreas Progenitors. Stem Cells 2008, 26, 3–16. [Google Scholar] [CrossRef]
- Pujadas, G.; Felipe, F.; Ejarque, M.; Sanchez, L.; Cervantes, S.; Lynn, F.C.; Gomis, R.; Gasa, R. Sequence and Epigenetic Determinants in the Regulation of the Math6 Gene by Neurogenin3. Differ. Res. Biol. Divers. 2011, 82, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, T.S.; Ku, M.; Jaffe, D.B.; Issac, B.; Lieberman, E.; Giannoukos, G.; Alvarez, P.; Brockman, W.; Kim, T.-K.; Koche, R.P.; et al. Genome-Wide Maps of Chromatin State in Pluripotent and Lineage-Committed Cells. Nature 2007, 448, 553–560. [Google Scholar] [CrossRef]
- Pan, G.; Tian, S.; Nie, J.; Yang, C.; Ruotti, V.; Wei, H.; Jonsdottir, G.A.; Stewart, R.; Thomson, J.A. Whole-Genome Analysis of Histone H3 Lysine 4 and Lysine 27 Methylation in Human Embryonic Stem Cells. Cell Stem Cell 2007, 1, 299–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.D.; Han, X.; Chew, J.L.; Liu, J.; Chiu, K.P.; Choo, A.; Orlov, Y.L.; Sung, W.-K.; Shahab, A.; Kuznetsov, V.A.; et al. Whole-Genome Mapping of Histone H3 Lys4 and 27 Trimethylations Reveals Distinct Genomic Compartments in Human Embryonic Stem Cells. Cell Stem Cell 2007, 1, 286–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ejarque, M.; Altirriba, J.; Gomis, R.; Gasa, R. Characterization of the Transcriptional Activity of the Basic Helix-Loop-Helix (BHLH) Transcription Factor Atoh8. Biochim. Biophys. Acta 2013, 1829, 1175–1183. [Google Scholar] [CrossRef]
- Ejarque, M.; Mir-Coll, J.; Gomis, R.; German, M.S.; Lynn, F.C.; Gasa, R. Generation of a Conditional Allele of the Transcription Factor Atonal Homolog 8 (Atoh8). PLoS ONE 2016, 11, e0146273. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan-Renuka, A.; Morosan-Puopolo, G.; Yusuf, F.; Abduelmula, A.; Chen, J.; Zoidl, G.; Philippi, S.; Dai, F.; Brand-Saberi, B. ATOH8, a Regulator of Skeletal Myogenesis in the Hypaxial Myotome of the Trunk. Histochem. Cell Biol. 2013, 141, 289–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawnsley, D.R.; Xiao, J.; Lee, J.S.; Liu, X.; Mericko-Ishizuka, P.; Kumar, V.; He, J.; Basu, A.; Lu, M.; Lynn, F.C.; et al. The Transcription Factor Atonal Homolog 8 Regulates Gata4 and Friend of Gata-2 during Vertebrate Development. J. Biol. Chem. 2013, 288, 24429–24440. [Google Scholar] [CrossRef] [Green Version]
- Horvat-Gordon, M.; Praul, C.; Ramachandran, R.; Bartell, P.; Leach, R. Use of Microarray Analysis to Study Gene Expression in the Avian Epiphyseal Growth Plate. Comp. Biochem. Physiol. Part D Genom. Proteom. 2009, 5, 12–23. [Google Scholar] [CrossRef]
- Schroeder, N.; Wuelling, M.; Hoffmann, D.; Brand-Saberi, B.; Vortkamp, A. Atoh8 Acts as a Regulator of Chondrocyte Proliferation and Differentiation in Endochondral Bones. PLoS ONE 2019, 14, e0218230. [Google Scholar] [CrossRef] [Green Version]
- Fragale, N.; Divvela, S.S.K.; Brand-Saberi, B. Atoh8 Expression Pattern in Early Zebrafish Embryonic Development. Histochem. Cell Biol. 2021, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Böing, M.; Brand-Saberi, B.; Napirei, M. Murine Transcription Factor Math6 Is a Regulator of Placenta Development. Sci. Rep. 2018, 8, 14997. [Google Scholar] [CrossRef]
- Fischer, A.; Gessler, M. Delta–Notch—and Then? Protein Interactions and Proposed Modes of Repression by Hes and Hey BHLH Factors. Nucleic Acids Res. 2007, 35, 4583–4596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Hernández, J.M.; García-González, E.G.; Brun, C.E.; Rudnicki, M.A. The Myogenic Regulatory Factors, Determinants of Muscle Development, Cell Identity and Regeneration. Semin. Cell Dev. Biol. 2017, 72, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Rawls, A.; Valdez, M.R.; Zhang, W.; Richardson, J.; Klein, W.H.; Olson, E.N. Overlapping Functions of the Myogenic BHLH Genes MRF4 and MyoD Revealed in Double Mutant Mice. Development 1998, 125, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, S.M.; Mehraban, F.; Komuves, L.G.; Yang, R.-B.; Tomlinson, J.E.; Zhang, Y.; Spriggs, F.; Topper, J.N. Gene Expression Profile of Human Endothelial Cells Exposed to Sustained Fluid Shear Stress. Physiol. Genom. 2002, 12, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Morikawa, M.; Mitani, Y.; Holmborn, K.; Kato, T.; Koinuma, D.; Maruyama, J.; Vasilaki, E.; Sawada, H.; Kobayashi, M.; Ozawa, T.; et al. The ALK-1/SMAD/ATOH8 Axis Attenuates Hypoxic Responses and Protects against the Development of Pulmonary Arterial Hypertension. Sci. Signal. 2019, 12, eaay4430. [Google Scholar] [CrossRef]
- Olsson, K.M.; Channick, R. Pregnancy in Pulmonary Arterial Hypertension. European Respir Rev. 2016, 25, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Ducray, F.; Idbaih, A.; de Reyniès, A.; Bièche, I.; Thillet, J.; Mokhtari, K.; Lair, S.; Marie, Y.; Paris, S.; Vidaud, M.; et al. Anaplastic Oligodendrogliomas with 1p19q Codeletion Have a Proneural Gene Expression Profile. Mol. Cancer 2008, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Freire, P.; Vilela, M.; Deus, H.; Kim, Y.-W.; Koul, D.; Colman, H.; Aldape, K.D.; Bogler, O.; Yung, A.W.; Coombes, K.; et al. Exploratory Analysis of the Copy Number Alterations in Glioblastoma Multiforme. PLoS ONE 2008, 3, e4076. [Google Scholar] [CrossRef] [Green Version]
- Ying, M.; Wang, S.; Sang, Y.; Sun, P.; Lal, B.; Goodwin, C.; Guerrero-Cazares, H.; Quinones-Hinojosa, A.; Laterra, J.; Xia, S. Regulation of Glioblastoma Stem Cells by Retinoic Acid: Role for Notch Pathway Inhibition. Oncogene 2011, 30, 3454–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Yu, J. Unearthing a Novel Tumor Suppressor Function of ATOH8 in Hepatocellular Carcinoma: Role in Acquisition of Cancer Stem Cell-like Features. Transl. Cancer Res. 2016, 5, S91–S94. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, J.; Yan, M.; Wang, J.; Wang, X.; Zhang, J.; Zhang, Y.; Li, P.; Lei, X.; Huang, Q.; et al. Downregulation of ATOH8 Induced by EBV-Encoded LMP1 Contributes to the Malignant Phenotype of Nasopharyngeal Carcinoma. Oncotarget 2015, 7, 26765–26779. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; He, Y.; Lin, H.; Yang, S.; Zhou, Y.; Zhou, L.; Zhong, J.; Lu, G.; Zheng, J.; Xue, Z.-X.; et al. High Expression of Atonal Homolog 8 Predicts a Poor Clinical Outcome in Patients with Colorectal Cancer and Contributes to Tumor Progression. Oncol. Rep. 2017, 37, 2955–2963. [Google Scholar] [CrossRef]
- Huang, Q.; Li, S.; Hu, X.; Sun, M.; Wu, Q.; Dai, H.; Tan, Y.; Sun, F.; Wang, C.; Rong, X.; et al. Shear Stress Activates ATOH8 via Autocrine VEGF Promoting Glycolysis Dependent-Survival of Colorectal Cancer Cells in the Circulation. J. Exp. Clin. Cancer Res. 2020, 39, 25. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-X.; He, K.; Tang, L.; Dai, S.-X.; Li, G.-H.; Lv, W.-W.; Guo, Y.-C.; An, S.-Q.; Wu, G.-Y.; Liu, D.; et al. Comprehensive Tissue-Specific Gene Set Enrichment Analysis and Transcription Factor Analysis of Breast Cancer by Integrating 14 Gene Expression Datasets. Oncotarget 2017, 8, 6775–6786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, X.-S.; Qu, Y.; Cheng, Y.; Li, W.-C.; Rotter, V.; Øyan, A.; Kalland, K.-H. Global Profiling of Histone and DNA Methylation Reveals Epigenetic-Based Regulation of Gene Expression during Epithelial to Mesenchymal Transition in Prostate Cells. BMC Genom. 2010, 11, 669. [Google Scholar] [CrossRef] [Green Version]
- Wan, F.; Zhu, Y.; Han, C.; Xu, Q.; Wu, J.; Dai, B.; Zhang, H.; Shi, G.; Gu, W.; Ye, D. Identification and Validation of an Eight-Gene Expression Signature for Predicting High Fuhrman Grade Renal Cell Carcinoma. Int. J. Cancer 2017, 140, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Xie, M.; Zhang, Y.; Xue, R.; Zhu, X.; Yang, H. Targeted Deletion of Atoh8 Results in Severe Hearing Loss in Mice. Genesis 2021, 59, e23442. [Google Scholar] [CrossRef] [PubMed]
- Kitakaze, K.; Oyadomari, M.; Zhang, J.; Hamada, Y.; Takenouchi, Y.; Tsuboi, K.; Inagaki, M.; Tachikawa, M.; Fujitani, Y.; Okamoto, Y.; et al. ATF4-Mediated Transcriptional Regulation Protects against β-Cell Loss during Endoplasmic Reticulum Stress in a Mouse Model. Mol. Metab. 2021, 54, 101338. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Guo, Y.; Liu, S.; Zhang, C.; Cui, T.; Ding, K.; Wang, P.; Wang, X.; Wang, Z. KLF4, a Key Regulator of a Transitive Triplet, Acts on the TGF-β Signaling Pathway and Contributes to High-Altitude Adaptation of Tibetan Pigs. Front. Genet. 2021, 12, 628192. [Google Scholar] [CrossRef]
- Kautz, L.; Meynard, D.; Monnier, A.; Darnaud, V.; Bouvet, R.; Wang, R.-H.; Deng, C.; Vaulont, S.; Mosser, J.; Coppin, H.; et al. Iron Regulates Phosphorylation of Smad1/5/8 and Gene Expression of Bmp6, Smad7, Id1, and Atoh8 in the Mouse Liver. Blood 2008, 112, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Varghese, J.; Masaratana, P.; Latunde-Dada, G.O.; Jacob, M.; Simpson, R.J.; McKie, A.T. The Transcription Factor ATOH8 Is Regulated by Erythropoietic Activity and Regulates HAMP Transcription and Cellular PSMAD1,5,8 Levels. British J. Haematol. 2014, 164, 586–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.J.; Martin-Diaz, L.; Ojanen, M.J.T.; Gasa, R.; Pesu, M.; Viiri, K. PRC2 Regulated Atoh8 Is a Regulator of Intestinal Microfold Cell (M Cell) Differentiation. Int J. Mol. Sci. 2021, 22, 9355. [Google Scholar] [CrossRef]
- Seyoum, Y.; Baye, K.; Humblot, C. Iron Homeostasis in Host and Gut Bacteria—A Complex Interrelationship. Gut Microbes 2021, 13, 1874855. [Google Scholar] [CrossRef]
Deletion of Genomic Region | Reported Phenotype | Mouse Strain | References |
---|---|---|---|
Exon 1 and 2 | Early embryonic lethality | C57BL/6 | [30] |
Exon 1 | Normal | Mixed background C57BL/6 and SV/129 | [39] |
Exon 1 | Defective placenta development | C57BL/6NJ | [43] |
Exon 1 | Pulmonary arterial hypertension and delayed retinal angiogenesis | C57BL/6 | [48] |
Exon 1 | Hearing loss | Mixed background C57BL/6J and 129S6 | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Divvela, S.S.K.; Saberi, D.; Brand-Saberi, B. Atoh8 in Development and Disease. Biology 2022, 11, 136. https://doi.org/10.3390/biology11010136
Divvela SSK, Saberi D, Brand-Saberi B. Atoh8 in Development and Disease. Biology. 2022; 11(1):136. https://doi.org/10.3390/biology11010136
Chicago/Turabian StyleDivvela, Satya Srirama Karthik, Darius Saberi, and Beate Brand-Saberi. 2022. "Atoh8 in Development and Disease" Biology 11, no. 1: 136. https://doi.org/10.3390/biology11010136
APA StyleDivvela, S. S. K., Saberi, D., & Brand-Saberi, B. (2022). Atoh8 in Development and Disease. Biology, 11(1), 136. https://doi.org/10.3390/biology11010136