Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Vacuum-Insulated Tandem Accelerator
3.2. Lithium Target
3.3. Beam-Shaping Assembly
3.4. Dosimetry
3.5. In Vitro and In Vivo Studies
3.6. Clinical Implementation
3.7. Other Applications
3.8. Future Research
- Neutron source. The research carried out will be aimed at modernizing the facility in order to obtain a 2.3 MeV 10 mA dc proton beam in a long-term stable mode.
- Neutron field. The purpose of these studies is spectral and flux characterization of the high flux epithermal neutron fields produced by the neutron source using a new directional spectrometer developed by the Laboratory of Subatomic Physics and Cosmology CNRS-IN2P3, Grenoble-Alpes University (France) [49] and by detectors, methods, and standards used by the Laboratory of Micro-Irradiation, Metrology, and Neutron Dosimetry, IRSN (Cadarache, France). This characterization has never been done for an epithermal neutron field.
- Boron imaging. One of the boron imaging methods is prompt γ-ray analysis based on the fact that the neutron capture with 10B is accompanied by instantaneous emission of 478 keV photon. We obtained a diagnostic neutron beam exclusively in the epithermal energy range using kinematic collimation and a thin lithium target. We plan to use this beam to study the kinetics of boron accumulation in the tumor and in organs of laboratory animals in real-time regime.
- Clinical trials. As is already mentioned, the team of researchers was tasked with conducting clinical trials of the BNCT technique at the BINP neutron source in order to introduce BNCT in Russia.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sauerwein, W.A.G.; Wittig, A.; Moss, R.; Nakagawa, Y. (Eds.) Neutron Capture Therapy: Principles and Applications; Springer: Heidelberg, Germany, 2012. [Google Scholar] [CrossRef] [Green Version]
- Harano, H.; Matsumoto, T.; Tanimura, Y.; Shikaze, Y.; Baba, M.; Nakamura, T. Monoenergetic and quasi-monoenergetic neutron reference fields in Japan. Radiat. Meas. 2010, 45, 1076–1082. [Google Scholar] [CrossRef]
- Lacoste, V. Review of radiation sources, calibration facilities and simulated workplace fields. Radiat. Meas. 2010, 45, 1083–1089. [Google Scholar] [CrossRef]
- Makarov, A.; Taskaev, S. Beam of monoenergetic neutrons for the calibration of a dark matter detector. JETP Lett. 2013, 97, 667–669. [Google Scholar] [CrossRef]
- Bayanov, B.; Belov, V.; Bender, E.; Bokhovko, M.; Dimov, G.; Kononov, V.; Kononov, E.; Kuksanov, N.; Palchikov, V.; Pivovarov, V.; et al. Accelerator based neutron source for the neutron-capture and fast neutron therapy at hospital. Nucl. Instrum. Methods Phys. Res. A 1998, 413, 397–426. [Google Scholar] [CrossRef] [Green Version]
- Taskaev, S. Accelerator based epithermal neutron source. Phys. Part. Nucl. 2015, 46, 956–990. [Google Scholar] [CrossRef]
- Taskaev, S. Development of an accelerator-based epithermal neutron source for boron neutron capture therapy. Phys. Part. Nucl. 2019, 50, 569–575. [Google Scholar] [CrossRef]
- Kolesnikov, I.; Sorokin, I.; Taskaev, S. Increasing the electric strength of a Vacuum-Insulated Tandem Accelerator. Instrum. Exp. Tech. 2020, 63, 807–815. [Google Scholar] [CrossRef]
- Kolesnikov, I.; Ostreinov, G.; Ponomarev, P.; Savinov, S.; Taskaev, S.; Shchudlo, I. Measurement of the current of argon ion beam accompanying a proton beam in a vacuum insulated tandem accelerator. Instrum. Exp. Tech. 2021, 64. in press. [Google Scholar]
- Bykov, T.; Kasatov, D.; Kolesnikov, I.; Koshkarev, A.; Makarov, A.; Ostreinov, Y.; Sokolova, E.; Sorokin, I.; Taskaev, S.; Shchudlo, I. A study of the spatial charge effect on 2-MeV proton beam transport in an accelerator-based epithermal neutron source. Tech. Phys. 2021, 66, 98–102. [Google Scholar] [CrossRef]
- Kasatov, D.; Koshkarev, A.; Makarov, A.; Ostreinov, G.; Taskaev, S.; Shchudlo, I. Fast-neutron source based on a vacuum-insulated tandem accelerator and a lithium target. Instrum. Exp. Tech. 2020, 63, 611–615. [Google Scholar] [CrossRef]
- Belchenko, Y.; Grigoryev, E. Surface-plasma negative ion source for the medicine accelerator. Rev. Sci. Instrum. 2002, 73, 939–942. [Google Scholar] [CrossRef]
- 10 kW Filament Volume-Cusp—D-Pace. Available online: https://www.d-pace.com/?e=304 (accessed on 27 March 2021).
- Bykov, T.; Kasatov, D.; Kolesnikov, Y.; Koshkarev, A.; Makarov, A.; Ostreinov, Y.; Sokolova, E.; Sorokin, I.; Taskaev, S.; Shchudlo, I. Use of a wire scanner for measuring a negative hydrogen ion beam injected in a tandem accelerator with vacuum insulation. Instrum. Exp. Tech. 2018, 61, 713–718. [Google Scholar] [CrossRef]
- Taskaev, S.; Kasatov, D.; Makarov, A.; Ostreinov, Y.; Shchudlo, I.; Sorokin, I.; Bykov, T.; Kolesnikov, I.; Koshkarev, A.; Sokolova, E. Accelerator neutron source for boron neutron capture therapy. In Proceedings of the 9th International Particle Accelerator Conference, Vancouver, BC, Canada, 29 April–4 May 2018. [Google Scholar]
- Ivanov, A.; Kasatov, D.; Koshkarev, A.; Makarov, A.; Ostreinov, Y.; Shchudlo, I.; Sorokin, I.; Taskaev, S. Suppression of an unwanted flow of charged particles in a tandem accelerator with vacuum insulation. JINST 2016, 11, P04018. [Google Scholar] [CrossRef]
- Blue, T.E.; Yanch, J.C. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors. J. Neuro-Oncol. 2003, 62, 19–31. [Google Scholar] [CrossRef]
- Bayanov, B.; Belov, V.; Kindyuk, V.; Oparin, E.; Taskaev, S. Lithium neutron producing target for BINP accelerator-based neutron source. Appl. Radiat. Isot. 2004, 61, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Bayanov, B.; Belov, V.; Taskaev, S. Neutron producing target for accelerator based neutron capture therapy. J. Phys. Conf. Ser. 2006, 41, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Bayanov, B.; Kashaeva, E.; Makarov, A.; Malyshkin, G.; Samarin, S.; Taskaev, S. A neutron producing target for BINP accelerator-based neutron source. Appl. Radiat. Isot. 2009, 67, S282–S284. [Google Scholar] [CrossRef]
- Badrutdinov, A.; Bykov, T.; Gromilov, S.; Higashi, Y.; Kasatov, D.; Kolesnikov, I.; Koshkarev, A.; Makarov, A.; Miyazawa, T.; Shchudlo, I.; et al. In situ observations of blistering of a metal irradiated with 2-MeV protons. Metals 2017, 7, 558. [Google Scholar] [CrossRef] [Green Version]
- Taskaev, S.; Bykov, T.; Kasatov, D.; Kolesnikov, I.; Koshkarev, A.; Makarov, A.; Savinov, S.; Shchudlo, I.; Sokolova, E. Measurement of the 7Li(p,p’γ)7Li reaction cross-section and 478 keV photon yield from a thick lithium target at proton energies from 0.65 MeV to 2.225 MeV. Nucl. Instrum. Methods Phys. Res. B 2021. under review. [Google Scholar]
- Kasatov, D.; Kolesnikov, I.; Koshkarev, A.; Makarov, A.; Sokolova, E.; Shchudlo, I.; Taskaev, S. Method for in situ measuring the thickness of a lithium layer. JINST 2020, 15, P10006. [Google Scholar] [CrossRef]
- Torres-Sánchez, P.; Porras, I.; Ramos-Chernenko, N.; de Saavedra, F.A.; Praena, J. Optimized beam shaping assembly for a 2.1-MeV proton-accelerator-based neutron source for boron neutron capture therapy. Sci. Rep. 2021, 11, 7576. [Google Scholar] [CrossRef]
- Kumada, H.; Takada, K.; Yamanashi, K.; Sakae, T.; Matsumura, A.; Sakurai, H. Verification of nuclear data for the Tsukuba plan, a newly developed treatment planning system for boron neutron capture therapy. Appl. Radiat. Isot. 2015, 106, 111–115. [Google Scholar] [CrossRef]
- Kumada, H.; Takada, K. Treatment planning system and patient positioning for boron neutron capture therapy. Radiol. Oncol. 2018, 2, 50. [Google Scholar] [CrossRef]
- Darda, S.A.; Soliman, A.Y.; Aljohani, M.S.; Xoubi, N. Technical feasibility study of BAEC TRIGA reactor (BTRR) as a neutron source for BNCT using OpenMC Monte Carlo code. Prog. Nucl. Energy 2020, 126, 103418. [Google Scholar] [CrossRef]
- Van Delinder, K.W.; Khan, R.; Gräfe, J.L. Neutron activation of gadolinium for ion therapy: A Monte Carlo study of charged particle beams. Sci. Rep. 2020, 10, 13417. [Google Scholar] [CrossRef]
- Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurements 2021, 168, 108427. [Google Scholar] [CrossRef]
- Roshani, M.; Phan, G.T.T.; Ali, P.J.M.; Roshani, G.H.; Hanus, R.; Duong, T.; Corniani, E.; Nazemi, E.; Kalmoun, E.M. Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness. Alex. Eng. J. 2021, 60, 1955–1966. [Google Scholar] [CrossRef]
- Zaidi, L.; Kashaeva, E.; Lezhnin, S.; Malyshkin, G.; Samarin, S.; Sycheva, T.; Taskaev, S.; Frolov, S. Neutron-beam-shaping assembly for Boron Neutron-Capture Therapy. Phys. At. Nucl. 2017, 80, 60–66. [Google Scholar] [CrossRef]
- Zaidi, L.; Belgaid, M.; Taskaev, S.; Khelifi, R. Beam shaping assembly design of 7Li(p,n)7Be neutron source for boron neutron capture therapy of deep-seated tumor. Appl. Radiat. Isot. 2018, 139, 316–324. [Google Scholar] [CrossRef]
- Bykov, T.; Kasatov, D.; Koshkarev, A.; Makarov, A.; Porosev, V.; Savinov, G.; Shchudlo, I.; Taskaev, S.; Verkhovod, G. Initial trials of a dose monitoring detector for boron neutron capture therapy. JINST 2021, 16, P01024. [Google Scholar] [CrossRef]
- Taskaeva, I.; Taskaev, S. Method of Measuring of Dose Produced by Recoil Nuclei. Patent for invention No. 2743417, 18 February 2021. [Google Scholar]
- Dymova, M.; Dmitrieva, M.; Kuligina, E.; Richter, V.; Savinov, S.; Shchudlo, I.; Sycheva, T.; Taskaeva, I.; Taskaev, S. Method of measuring high-LET particles dose. Radiat. Res. 2021. under review. [Google Scholar]
- Zaboronok, A.; Byvaltsev, V.; Kanygin, V.; Iarullina, A.; Kichigin, A.; Volkova, O.; Mechetina, L.; Taskaev, S.; Muhamadiyarov, R.; Nakai, K.; et al. Boron-neutron capture therapy in Russia: Preclinical evaluation of efficacy and perspectives of its application in neurooncology. New Armen. Med. J. 2017, 11, 1–9. [Google Scholar]
- Sato, E.; Zaboronok, A.; Yamamoto, T.; Nakai, K.; Taskaev, S.; Volkova, O.; Mechetina, L.; Taranin, A.; Kanygin, V.; Isobe, T.; et al. Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy. J. Radiat. Res. 2018, 59, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Zavjalov, E.; Zaboronok, A.; Kanygin, V.; Kasatova, A.; Kichigin, A.; Mukhamadiyarov, R.; Razumov, I.; Sycheva, T.; Mathis, B.; Maezono, S.; et al. Accelerator-based boron neutron capture therapy for malignant glioma: A pilot neutron irradiation study using boron phenylalanine, sodium borocaptate and liposomal borocaptate with a heterotopic U87 glioblastoma model in SCID mice. Intern. J. Radiat. Biol. 2020, 96, 868–878. [Google Scholar] [CrossRef]
- Ivanov, A.; Smirnov, A.; Taskaev, S.; Bayanov, B.; Belchenko, Y.; Davydenko, V.; Dunaevsky, A.; Emelev, I.; Kasatov, D.; Makarov, A.; et al. Accelerator based neutron source for boron neutron capture therapy. Adv. Phys. Sci. 2021, 191. in press. [Google Scholar] [CrossRef]
- Taskaev, S.; Sorokin, I. Vacuum Insulated Tandem Accelerator. Patent for invention No. 2653840, 15 May 2018. [Google Scholar]
- Domarov, E.; Ivanov, A.; Kuksanov, N.; Salimov, R.; Sorokin, I.; Taskaev, S.; Cherepkov, V. A Sectioned High-Voltage Rectifier for a Compact Tandem Accelerator with Vacuum Insulation. Instrum. Exp. Tech. 2017, 60, 70–73. [Google Scholar] [CrossRef]
- Orders and Their Implementation—The Russian Government. Available online: http://government.ru/orders/selection/401/41771/ (accessed on 27 March 2021).
- Shoshin, A.; Burdakov, A.; Ivantsivskiy, M.; Polosatkin, S.; Klimenko, M.; Semenov, A.; Taskaev, S.; Kasatov, D.; Shchudlo, I.; Makarov, A.; et al. Qualification of Boron Carbide Ceramics for Use in ITER Ports. IEEE Trans. Plasma Sci. 2020, 48, 1474–1478. [Google Scholar] [CrossRef]
- Shoshin, A.; Burdakov, A.; Ivantsivskiy, M.; Polosatkin, S.; Semenov, A.; Sulyaev, Y.; Zaitsev, E.; Polozova, P.; Taskaev, S.; Kasatov, D.; et al. Test results of boron carbide ceramics for ITER port protection. Fusion Eng. Des. 2021, 168, 112426. [Google Scholar] [CrossRef]
- Zhang, Z. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC. JINST 2018, 13, C04013. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, A.; Belchenko, Y.; Burdakov, A.; Davydenko, V.; Donin, A.; Ivanov, A.; Konstantinov, S.; Krivenko, A.; Kudryavtsev, A.; Mekler, K.; et al. The detection of nitrogen using nuclear resonance absorption of mono-energetic gamma rays. Nucl. Instr. Methods Phys. Res. A 2009, 606, 238–242. [Google Scholar] [CrossRef]
- Rostoker, N.; Qerushi, A.; Binderbauer, M. Colliding beam fusion reactors. J. Fusion Energy 2004, 22, 83–92. [Google Scholar] [CrossRef]
- Farrell, J.; Dudnikov, V.; Guardala, N.; Merkel, G.; Taskaev, S. An intense positron beam source based on a high current 2 MeV vacuum insulated tandem accelerator. In Proceedings of the 7th International Workshop on Positron and Positronium Chemistry, Knoxville, TN, USA, 7–12 July 2002; p. 47. [Google Scholar]
- Sauzet, N.; Santos, D.; Guillaudin, O.; Bosson, G.; Bouvier, J.; Descombes, T.; Marton, M.; Muraz, J.F. Fast neutron spectroscopy from 1 MeV up to 15 MeV with Mimac-FastN, a mobile and directional fast neutron spectrometer. Nucl. Instrum. Methods Phys. Res. A 2020, 965, 163799. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taskaev, S.; Berendeev, E.; Bikchurina, M.; Bykov, T.; Kasatov, D.; Kolesnikov, I.; Koshkarev, A.; Makarov, A.; Ostreinov, G.; Porosev, V.; et al. Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target. Biology 2021, 10, 350. https://doi.org/10.3390/biology10050350
Taskaev S, Berendeev E, Bikchurina M, Bykov T, Kasatov D, Kolesnikov I, Koshkarev A, Makarov A, Ostreinov G, Porosev V, et al. Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target. Biology. 2021; 10(5):350. https://doi.org/10.3390/biology10050350
Chicago/Turabian StyleTaskaev, Sergey, Evgenii Berendeev, Marina Bikchurina, Timofey Bykov, Dmitrii Kasatov, Iaroslav Kolesnikov, Alexey Koshkarev, Aleksandr Makarov, Georgii Ostreinov, Vyacheslav Porosev, and et al. 2021. "Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target" Biology 10, no. 5: 350. https://doi.org/10.3390/biology10050350
APA StyleTaskaev, S., Berendeev, E., Bikchurina, M., Bykov, T., Kasatov, D., Kolesnikov, I., Koshkarev, A., Makarov, A., Ostreinov, G., Porosev, V., Savinov, S., Shchudlo, I., Sokolova, E., Sorokin, I., Sycheva, T., & Verkhovod, G. (2021). Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target. Biology, 10(5), 350. https://doi.org/10.3390/biology10050350