In Vitro Hepatic Assessment of Cineole and Its Derivatives in Common Brushtail Possums (Trichosurus vulpecula) and Rodents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Selection of Cineole Derivatives
2.3. Animals
2.4. Preparation of Mouse, Rat, and Possum Liver Microsomes
2.5. CYP3A Catalytic Activity
2.6. Prediction of CYP Inhibition In Silico
2.7. Glucuronidation of p-Nitrophenol
2.8. Western Blotting
2.9. Statistical Analysis
3. Results
3.1. CYP3A Catalytic Activity
3.2. Prediction of CYP Inhibition In Silico
3.3. p-Nitrophenol Glucuronidation
4. Discussion
4.1. CYP3A Catalytic Activity
4.2. p-Nitrophenol Glucuronidation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stupans, I.; Jones, B.; McKinnon, R.A. Xenobiotic metabolism in Australian marsupials. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 128, 367–376. [Google Scholar] [CrossRef]
- Pass, G.J.; McLean, S.; Stupans, I.; Davies, N.W. Microsomal metabolism and enzyme kinetics of the terpene p-cymene in the common brushtail possum (Trichosurus vulpecula), koala (Phascolarctos cinereus) and rat. Xenobiotica 2002, 32, 383–397. [Google Scholar] [CrossRef]
- Babu, G.D.K.; Singh, B. Simulation of Eucalyptus cinerea oil distillation: A study on optimization of 1,8-cineole production. Biochem. Eng. J. 2009, 44, 226–231. [Google Scholar] [CrossRef]
- Tibballs, J. Clinical effects and management of eucalyptus oil ingestion in infants and young children. Med. J. Aust. 1995, 163, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.V. Registry of Toxic Effects of Chemical Substances; US Department of Health and Human Services, National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 1987.
- Jenner, P.; Hagan, E.; Taylor, J.M.; Cook, E.; Fitzhugh, O. Food flavourings and compounds of related structure I. Acute oral toxicity. Food Cosmet. Toxicol. 1964, 2, 327–343. [Google Scholar] [CrossRef]
- Lawler, I.R.; Stapley, J.; Foley, W.J.; Eschler, B.M. Ecological Example of Conditioned Flavor Aversion in Plant–Herbivore Interactions: Effect of Terpenes of Eucalyptus Leaves on Feeding by Common Ringtail and Brushtail Possums. J. Chem. Ecol. 1999, 25, 401–415. [Google Scholar] [CrossRef]
- Pass, G.; McLean, S.; Stupans, I.; Davies, N. Microsomal metabolism of the terpene 1,8-cineole in the common brushtail possum (Trichosurus vulpecula), koala (Phascolarctos cinereus), rat and human. Xenobiotica 2001, 31, 205–221. [Google Scholar] [CrossRef]
- Wiggins, N.L.; McArthur, C.; McLean, S.; Boyle, R. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J. Chem. Ecol. 2003, 29, 1447–1464. [Google Scholar] [CrossRef] [PubMed]
- Pass, G.J.; McLean, S.; Stupans, I. Induction of xenobiotic metabolising enzymes in the common brushtail possum, Trichosurus vulpecula, by Eucalyptus terpenes. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1999, 124, 239–246. [Google Scholar] [CrossRef]
- Werk, A.N.; Cascorbi, I. Functional gene variants of CYP3A4. Clin. Pharmacol. Ther. 2014, 96, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.-C.; Luo, X.-X.; Macauley, J.S.; Grigor, M.R.; Wanwimolruk, S. In vitro hepatic metabolism of CYP3A-mediated drugs quinine and midazolam in the common brush-tailed possum (Trichosurus vulpecula). Environ. Toxicol. Chem. 1998, 17, 317–324. [Google Scholar] [CrossRef]
- Valentine, S.P.; Le Nedelec, M.J.; Menzies, A.R.; Scandlyn, M.J.; Goodin, M.G.; Rosengren, R.J. Curcumin modulates drug metabolizing enzymes in the female Swiss Webster mouse. Life Sci. 2006, 78, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.E.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.J.A.B. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Kitada, M.; Igoshi, N.; Kamataki, T.; Itahashi, K.; Imaoka, S.; Komori, M.; Funae, Y.; Rikihisa, T.; Kanakubo, Y. Immunochemical similarity of P-450 HFLa, a form of cytochrome P-450 in human fetal livers, to a form of rat liver cytochrome P-450 inducible by macrolide antibiotics. Arch. Biochem. Biophys. 1988, 264, 61–66. [Google Scholar] [CrossRef]
- Liu, X.-W.; Rong, Y.; Zhang, X.-F.; Huang, J.-J.; Cai, Y.; Huang, B.-Y.; Zhu, L.; Wu, B.; Hou, N.; Luo, C.-F. Human UDP-Glucuronosyltransferase 2B4 and 2B7 Are Responsible for Naftopidil Glucuronidation in Vitro. Front. Pharmacol. 2018, 8, 984. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Lai, L.; Pei, J. Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network. Mol. Pharm. 2018, 15, 4336–4345. [Google Scholar] [CrossRef]
- Fowler, B.A.; M, K.K.; Squibb, K.S.; Lucier, G.W.; Hayes, A.W. Organelles as Tools in Toxicology. In Principles of Clinical Toxicology; Hayes, A.W., Ed.; CRC Press: New York, UK, 1994; pp. 1201–1230. [Google Scholar]
- Towbin, H. Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein. Anal. Biochem. 1979, 112, 195–203. [Google Scholar]
- Chen, H.; Zhang, X.; Feng, Y.; Rui, W.; Shi, Z.; Wu, L. Bioactive components of Glycyrrhiza uralensis mediate drug functions and properties through regulation of CYP450 enzymes. Mol. Med. Rep. 2014, 10, 1355–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, S.K.; Kim, K.; Chun, S.; Oh, T.; Jung, W.; Jung, K.; Yun, C.H. Screening of Human CYP1A2 and CYP3A4 Inhibitors from Seaweed In Silico and In Vitro. Mar. Drugs 2020, 18, 603. [Google Scholar] [CrossRef]
- Ubersax, J.A.; Ferrell, J.E., Jr. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 2007, 8, 530–541. [Google Scholar] [CrossRef]
- Sorensen, J.S.; Forbey, K.C.; Tanquay, R.L.; McLeod, B. Tissue distribution of cytochrome P450 3A (CYP3A) in brushtail possums (Trichosurus vulpecula) exposed to Eucalyptus terpenes. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 2007, 145, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Bray, B.J.; Perry, N.B.; Menkes, D.B.; Rosengren, R.J. St. John’s Wort Extract Induces CYP3A and CYP2E1 in the Swiss Webster Mouse. Toxicol. Sci. 2002, 66, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bondarenko, L.B.; Shayakhmetova, G.M.; Voronina, A.K.; Kovalenko, V.M.J.M.R.J. Losartan effects on liver cytochromes CYP3A, CYP2C and CYP2E1 functioning at metabolic syndrome in young and adult rats. Med. Res. J. 2019, 4, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lim, L.-Y. Effects of spice constituents on P-glycoprotein-mediated transport and CYP3A4-mediated metabolism in vitro. Drug Metab. Dispos. 2008, 36, 1283–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liapis, P.; Pass, G.J.; McKinnon, R.A.; Stupans, I. Characterisation of tolbutamide hydroxylase activity in the common brushtail possum,(Trichosurus vulpecula) and koala (Phascolarctos cinereus): Inhibition by the Eucalyptus terpene 1,8-cineole. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 2000, 127, 351–357. [Google Scholar] [CrossRef]
- Pass, G.J.; McLean, S. Inhibition of the microsomal metabolism of 1,8-cineole in the common brushtail possum (Trichosurus vulpecula) by terpenes and other chemicals. Xenobiotica 2002, 32, 1109–1126. [Google Scholar] [CrossRef]
- Miyazawa, M.; Shindo, M.; Shimada, T. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from Eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Drug Metab. Dispos. 2001, 29, 200–205. [Google Scholar]
- Ngo, S.N.; McKinnon, R.A.; Stupans, I. The effects of Eucalyptus terpenes on hepatic cytochrome P450 CYP4A, peroxisomal Acyl CoA oxidase (AOX) and peroxisome proliferator activated receptor alpha (PPARalpha) in the common brushtail possum (Trichosurus vulpecula). Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 2003, 136, 165–173. [Google Scholar] [CrossRef]
- Lamba, J.K.; Lin, Y.S.; Schuetz, E.G.; Thummel, K.E. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 2002, 54, 1271–1294. [Google Scholar] [CrossRef]
- Wandel, C.; Witte, J.S.; Hall, J.M.; Stein, C.M.; Wood, A.J.; Wilkinson, G.R. CYP3A activity in African American and European American men: Population differences and functional effect of the CYP3A4* 1B 5′-promoter region polymorphism. Clin. Pharmacol. Ther. 2000, 68, 82–91. [Google Scholar] [CrossRef]
- McLean, S.; Brandon, S.; Davies, N.W.; Boyle, R.; Foley, W.J.; Moore, B.; Pass, G.J. Glucuronuria in the koala. J. Chem. Ecol. 2003, 29, 1465–1477. [Google Scholar] [CrossRef]
- Meunier, C.J.; Verbeeck, R.K. Glucuronidation of R-andS-Ketoprofen, Acetaminophen, and Diflunisal by Liver Microsomes of Adjuvant-Induced Arthritic Rats. Drug Metab. Dispos. 1999, 27, 26–31. [Google Scholar] [PubMed]
- Kuhn, U.D.; Rost, M.; Müller, D. Para-nitrophenol glucuronidation and sulfation in rat and human liver slices. Exp. Toxicol. Pathol. 2001, 53, 81–88. [Google Scholar] [CrossRef]
- Jansen, P.L.M.; Henderson, P.T. Influence of phenobarbital treatment on p-nitrophenol and bilirubin glucuronidation in Wistar rat, Gunn rat and cat. Biochem. Pharmacol. 1972, 21, 2457–2462. [Google Scholar] [CrossRef]
- Barre, L.; Fournel-Gigleux, S.; Finel, M.; Netter, P.; Magdalou, J.; Ouzzine, M. Substrate specificity of the human UDP-glucuronosyltransferase UGT2B4 and UGT2B7. FEBS J. 2007, 274, 1256–1264. [Google Scholar] [CrossRef]
- Tukey, R.H.; Strassburg, C.P. Human UDP-glucuronosyltransferases: Metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 2000, 40, 581–616. [Google Scholar] [CrossRef] [PubMed]
- Dash, J.A. Effect of dietary terpenes on glucuronic acid excretion and ascorbic acid turnover in the brushtail possum (Trichosurus vulpecula). Comp. Biochem. Physiol. Part B 1988, 89, 221–226. [Google Scholar] [CrossRef]
- Trepanier, L.A.; Ray, K.; Winand, N.J.; Spielberg, S.P.; Cribb, A.E. Cytosolic arylamine n-acetyltransferase (NAT) deficiency in the dog and other canids due to an absence of NAT genes. Biochem. Pharmacol. 1997, 54, 73–80. [Google Scholar] [CrossRef]
- Court, M.H. Feline drug metabolism and disposition: Pharmacokinetic evidence for species differences and molecular mechanisms. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
Cineole and Its Derivatives | Species | Solvent Control | 12.5 µM | 25 µM | ||
---|---|---|---|---|---|---|
Activity * | Activity * | % of Control | Activity * | % of Control | ||
Cineole | Mouse | 0.68 ± 0.02 | 0.68 ± 0.02 | 100.71 ± 2.93 | 0.64 ± 0.02 | 94.48 ± 2.69 |
Rat | 0.64 ± 0.06 | 0.64 ± 0.05 | 100.53 ± 2.31 | 0.65 ± 0.05 | 101.27 ± 1.62 | |
Possum | 0.40 ± 0.01 | 0.40 ± 0.01 | 99.53 ± 2.67 | 0.41 ± 0.01 | 101.86 ± 0.29 | |
4-pentylbicyclo[2.2.2]octane-1-carboxylic acid | Mouse | 0.63 ± 0.03 | 0.61 ± 0.04 | 96.35 ± 1.91 | 0.67 ± 0.01 | 105.58 ± 2.97 |
Rat | 0.53 ± 0.06 | 0.56 ± 0.05 | 104.68 ± 3.30 | 0.55 ± 0.06 | 102.05 ± 2.42 | |
Possum | 0.36 ± 0.04 | 0.40 ± 0.05 | 109.05 ± 3.58 | 0.40 ± 0.02 | 110.83 ± 7.26 | |
5-norbornen-2-endo-3-exo-dicarboxylic acid | Mouse | 0.75 ± 0.03 | 0.73 ± 0.04 | 96.48 ± 0.72 | 0.77 ± 0.03 | 101.88 ± 0.75 |
Rat | 0.61 ± 0.10 | 0.65 ± 0.10 | 107.52 ± 3.84 | 0.64 ± 0.09 | 105.30 ± 2.08 | |
Possum | 0.40 ± 0.02 | 0.39 ± 0.03 | 98.90 ± 0.73 | 0.38 ± 0.02 | 95.23 ± 3.85 | |
Cis-1,5-dimethylbicyclo[3.3.0]octane-3,7-dione | Mouse | 0.71 ± 0.04 | 0.71 ± 0.03 | 100.94 ± 2.70 | 0.70 ± 0.03 | 99.64 ± 0.93 |
Rat | 0.61 ± 0.06 | 0.59 ± 0.04 | 98.31 ± 3.10 | 0.60 ± 0.06 | 99.32 ± 1.00 | |
Possum | 0.38 ± 0.02 | 0.41 ± 0.02 | 105.83 ± 1.42 | 0.40 ± 0.03 | 102.79 ± 6.11 | |
Trans-terpin | Mouse | 0.71 ± 0.04 | 0.71 ± 0.03 | 100.94 ± 2.70 | 0.70 ± 0.03 | 99.64 ± 0.93 |
Rat | 0.61 ± 0.06 | 0.59 ± 0.04 | 98.31 ± 3.10 | 0.60 ± 0.06 | 99.32 ± 1.00 | |
Possum | 0.38 ± 0.02 | 0.41 ± 0.02 | 105.83 ± 1.42 | 0.40 ± 0.03 | 102.79 ± 6.11 | |
1,1-dimethylcyclohexane | Mouse | 0.74 ± 0.03 | 0.73 ± 0.03 | 98.93 ± 0.94 | 0.79 ± 0.04 | 106.62 ± 1.13 |
Rat | 0.61 ± 0.11 | 0.61 ± 0.07 | 103.11 ± 7.68 | 0.61 ± 0.10 | 100.08 ± 1.66 | |
Possum | 0.39 ± 0.02 | 0.38 ± 0.01 | 97.96 ± 1.28 | 0.40 ± 0.02 | 101.83 ± 0.61 | |
7-oxabicyclo[2.2.1]-hept-5-ene-2-carboxylic acid | Mouse | 0.65 ± 0.01 | 0.67 ± 0.01 | 103.33 ± 2.77 | 0.66 ± 0.03 | 103.01 ± 3.52 |
Rat | 0.45 ± 0.05 | 0.48 ± 0.06 | 107.45 ± 5.87 | 0.51 ± 0.04 | 113.77 ± 3.17 | |
Possum | 0.39 ± 0.02 | 0.41 ± 0.02 | 106.38 ± 7.47 | 0.40 ± 0.02 | 103.08 ± 1.09 | |
Dimethyl-trans-cyclohexane-1,4-dicarboxylate | Mouse | 0.72 ± 0.02 | 0.72 ± 0.02 | 100.15 ± 1.31 | 0.77 ± 0.05 | 106.11 ± 4.88 |
Rat | 0.63 ± 0.03 | 0.64 ± 0.02 | 102.31 ± 2.42 | 0.73 ± 0.06 | 115.51 ± 5.35# | |
Possum | 0.38 ± 0.02 | 0.39 ± 0.02 | 102.02 ± 4.76 | 0.42 ± 0.03 | 110.63 ± 6.00 | |
Camphor | Mouse | 0.70 ± 0.02 | 0.68 ± 0.02 | 97.10 ± 2.15 | 0.68 ± 0.03 | 96.29 ± 3.21 |
Rat | 0.63 ± 0.05 | 0.63 ± 0.03 | 100.68 ± 3.99 | 0.59 ± 0.04 | 95.04 ± 1.81 | |
Possum | 0.39 ± 0.02 | 0.40 ± 0.03 | 102.38 ± 2.05 | 0.41 ± 0.03 | 104.15 ± 2.57 |
Compound Names | Predicted Values of CYP3A4 Inhibition |
---|---|
Ketoconazole (Positive control) | 1.0 |
Cineole | 0 |
4-pentylbicyclo[2.2.2]octane-1-carboxylic acid | 0 |
5-norbornen-2-endo-3-exo-dicarboxylic acid | 0 |
Cis-1,5-dimethylbicyclo[3.3.0]octane-3,7-dione | 0 |
Trans-terpin | 0 |
1,1-dimethylcyclohexane | 0 |
7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid | 0 |
Dimethyl-trans-cyclohexane-1,4-dicarboxylate | 0 |
Camphor | 0 |
Cineole and Its Derivatives | Species | Solvent Control | 12.5 µM | 25 µM | ||
---|---|---|---|---|---|---|
Activity * | Activity * | % of Control | Activity * | % of Control | ||
Cineole | Mouse | 2.00 ± 0.20 | 2.00 ± 0.16 | 100.36 ± 1.99 | 1.90 ± 0.16 | 94.21 ± 1.51 |
Rat | 2.73 ± 0.07 | 2.46 ± 0.12 | 90.25 ± 6.49 | 2.67 ± 0.21 | 98.18 ± 9.75 | |
Possum | 4.11 ± 0.12 | 4.09 ± 0.18 | 99.39 ± 1.71 | 4.18 ± 0.13 | 101.80 ± 1.12 | |
4-pentylbicyclo[2.2.2]octane-1-carboxylic acid | Mouse | 2.45 ± 0.12 | 2.41 ± 0.06 | 98.73 ± 3.51 | 2.21 ± 0.14 | 90.15 ± 2.18 # |
Rat | 2.77 ± 0.03 | 2.88 ± 0.13 | 103.95 ± 3.65 | 2.82 ± 0.07 | 101.89 ± 3.31 | |
Possum | 3.86 ± 0.23 | 3.80 ± 0.27 | 98.44 ± 1.05 | 3.96 ± 0.17 | 102.71 ± 1.91 | |
5-norbornen-2-endo-3-exo-dicarboxylic acid | Mouse | 2.09 ± 0.14 | 2.23 ± 0.09 | 107.16 ± 4.97 | 2.23 ± 0.10 | 107.42 ± 3.63 |
Rat | 2.96 ± 0.13 | 2.85 ± 0.16 | 96.42 ± 1.23 | 2.92 ± 0.19 | 98.52 ± 2.14 | |
Possum | 3.87 ± 0.20 | 3.90 ± 0.23 | 100.53 ± 2.09 | 3.91 ± 0.20 | 100.86 ± 1.90 | |
Cis-1,5-dimethylbicyclo[3.3.0]octane-3,7-dione | Mouse | 2.50 ± 0.09 | 2.56 ± 0.11 | 102.19 ± 2.82 | 2.40 ± 0.15 | 95.72 ± 2.42 |
Rat | 2.62 ± 0.06 | 2.58 ± 0.03 | 98.32 ± 3.38 | 2.56 ± 0.02 | 97.79 ± 2.87 | |
Possum | 4.00 ± 0.21 | 3.77 ± 0.28 | 93.15 ± 4.58 | 3.78 ± 0.28 | 93.30 ± 4.13 | |
Trans-terpin | Mouse | 2.39 ± 0.04 | 2.44 ± 0.06 | 101.67 ± 0.74 | 2.33 ± 0.07 | 97.15 ± 1.80 |
Rat | 2.76 ± 0.04 | 2.87 ± 0.22 | 104.14 ± 9.44 | 2.50 ± 0.10 | 90.51 ± 3.63 | |
Possum | 3.92 ± 0.32 | 3.90 ± 0.34 | 99.53 ± 0.84 | 3.91 ± 0.34 | 99.77 ± 0.60 | |
1,1-dimethylcyclohexane | Mouse | 2.34 ± 0.07 | 2.48 ± 0.13 | 105.97 ± 2.23 | 2.19 ± 0.09 | 93.67 ± 1.67 |
Rat | 2.58 ± 0.11 | 2.59 ± 0.08 | 100.53 ± 2.39 | 2.58 ± 0.05 | 100.29 ± 3.55 | |
Possum | 4.05 ± 0.20 | 4.08 ± 0.18 | 100.68 ± 0.60 | 4.03 ± 0.23 | 99.32 ± 0.90 | |
7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid | Mouse | 3.42 ± 0.06 | 3.46 ± 0.04 | 101.00 ± 0.64 | 3.26 ± 0.09 | 95.53 ± 4.50 |
Rat | 2.80 ± 0.07 | 2.87 ± 0.07 | 102.50 ± 2.98 | 2.75 ± 0.06 | 98.20 ± 1.42 | |
Possum | 4.05 ± 0.07 | 4.02 ± 0.09 | 99.13 ± 1.29 | 3.99 ± 0.09 | 98.49 ± 0.83 | |
Dimethyl-trans-cyclohexane-1,4-dicarboxylate | Mouse | 2.28 ± 0.06 | 2.43 ± 0.06 | 107.00 ± 0.42 | 2.73 ± 0.12 | 120.23 ± 8.23 # |
Rat | 2.99 ± 0.16 | 2.71 ± 0.13 | 90.77 ± 2.49 | 2.83 ± 0.20 | 94.83 ± 5.80 | |
Possum | 3.86 ± 0.21 | 3.96 ± 0.20 | 102.94 ± 4.63 | 3.92 ± 0.19 | 101.67 ± 0.92 | |
Camphor | Mouse | 2.31 ± 0.08 | 2.42 ± 0.08 | 104.80 ± 1.79 | 2.31 ± 0.09 | 100.10 ± 2.45 |
Rat | 2.55 ± 0.06 | 2.62 ± 0.09 | 102.59 ± 1.43 | 2.72 ± 0.24 | 106.26 ± 6.99 | |
Possum | 3.93 ± 0.38 | 4.01 ± 0.33 | 102.42 ± 1.78 | 3.97 ± 0.33 | 101.32 ± 1.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chand, R.R.; Nimick, M.; Cridge, B.; Rosengren, R.J. In Vitro Hepatic Assessment of Cineole and Its Derivatives in Common Brushtail Possums (Trichosurus vulpecula) and Rodents. Biology 2021, 10, 1326. https://doi.org/10.3390/biology10121326
Chand RR, Nimick M, Cridge B, Rosengren RJ. In Vitro Hepatic Assessment of Cineole and Its Derivatives in Common Brushtail Possums (Trichosurus vulpecula) and Rodents. Biology. 2021; 10(12):1326. https://doi.org/10.3390/biology10121326
Chicago/Turabian StyleChand, Ravneel R., Mhairi Nimick, Belinda Cridge, and Rhonda J. Rosengren. 2021. "In Vitro Hepatic Assessment of Cineole and Its Derivatives in Common Brushtail Possums (Trichosurus vulpecula) and Rodents" Biology 10, no. 12: 1326. https://doi.org/10.3390/biology10121326
APA StyleChand, R. R., Nimick, M., Cridge, B., & Rosengren, R. J. (2021). In Vitro Hepatic Assessment of Cineole and Its Derivatives in Common Brushtail Possums (Trichosurus vulpecula) and Rodents. Biology, 10(12), 1326. https://doi.org/10.3390/biology10121326