MS-222 and Propofol Sedation during and after the Simulated Transport of Nile tilapia (Oreochromis niloticus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Experimental Animals
2.3. Simulated Transport
2.4. Clinical and Sedation Evaluation
2.5. Water Quality Assessment
2.6. Behavioral Assessments
2.7. Blood Analyses
2.8. Fillet Quality and Glucose Based-Glycogen Content
2.9. Histological Analysis of the Gills
2.10. Oxidative-Stress-Related Responses
2.11. Statistical Analysis
3. Results
3.1. Propofol Reduced the Responses to External Stimuli
3.2. Water pH Changed over Time
3.3. Propofol Induced an Increase in the Swimming Activity during Transport
3.4. General Stress Indicators Were Affected by Both MS-222 and Propofol
3.5. The Quality of the Fillet Was Not Affected by the Treatments
3.6. Gill Functionality Was Not Affected by the Anaesthetics’ Exposure
3.7. Propofol Reduced ROS and GST Activity in Gills and GR Activity in Liver
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toni, M.; Manciocco, A.; Angiulli, E.; Alleva, E.; Cioni, C.; Malavasi, S. Review: Assessing fish welfare in research and aquaculture, with a focus on European directives. Animal 2019, 13, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Zander, K.; Feucht, Y. Consumers’ Willingness to Pay for Sustainable Seafood Made in Europe. Int. Food Agribus. 2017, 30, 251–275. [Google Scholar] [CrossRef] [Green Version]
- Stubbe Solgaard, H.; Yang, Y. Consumers’ perception of farmed fish and willingness to pay for fish welfare. Br. Food J. 2011, 113, 997–1010. [Google Scholar] [CrossRef]
- Brown, C. Fish intelligence, sentience and ethics. Anim. Cogn. 2015, 18, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sneddon, L.U. Evolution of nociception and pain: Evidence from fish models. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20190290. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, F.D.F.; Freire, C.A. An overview of stress physiology of fish transport: Changes in water quality as a function of transport duration. Fish. Fish. 2016, 17, 1055–1072. [Google Scholar] [CrossRef]
- Sloman, K.A.; Bouyoucos, I.A.; Brooks, E.J.; Sneddon, L.U. Ethical considerations in fish research. J. Fish. Biol. 2019, 94, 556–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacchi, L.; Lowrey, L.; Musharrafieh, R.; Crossey, K.; Larragoite, E.T.; Salinas, I. Effects of transportation stress and addition of salt to transport water on the skin mucosal homeostasis of rainbow trout (Oncorhynchus mykiss). Aquaculture 2015, 435, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Refaey, M.M.; Li, D. Transport Stress Changes Blood Biochemistry, Antioxidant Defense System, and Hepatic HSPs mRNA Expressions of Channel Catfish Ictalurus punctatus. Front. Physiol. 2018, 9, 1628. [Google Scholar] [CrossRef]
- Pakhira, C.; Nagesh, T.S.; Abraham, T.J.; Dash, G.; Behera, S. Stress responses in rohu, Labeo rohita transported at different densities. Aquac. Rep. 2015, 2, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Manuel, R.; Boerrigter, J.; Roques, J.; van der Heul, J.; van den Bos, R.; Flik, G.; van de Vis, H. Stress in African catfish (Clarias gariepinus) following overland transportation. Fish. Physiol. Biochem. 2014, 40, 33–44. [Google Scholar] [CrossRef]
- Segner, H.; Sundh, H.; Buchmann, K.; Douxfils, J.; Sundell, K.S.; Mathieu, C.; Ruane, N.; Jutfelt, F.; Toften, H.; Vaughan, L. Health of farmed fish: Its relation to fish welfare and its utility as welfare indicator. Fish. Physiol. Biochem. 2012, 38, 85–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purbosari, N.; Warsiki, E.; Syamsu, K.; Santoso, J. Natural versus synthetic anesthetic for transport of live fish: A review. Aquac. Fish. 2019, 4, 129–133. [Google Scholar] [CrossRef]
- Harmon, T.S. Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: A review of the basics. Rev. Aquac. 2009, 1, 58–66. [Google Scholar] [CrossRef]
- Neiffer, D.L.; Stamper, M.A. Fish sedation, analgesia, anesthesia, and euthanasia: Considerations, methods, and types of drugs. ILAR J. 2009, 50, 343–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantilla, D.; Kristinsson, H.G.; Balaban, M.O.; Otwell, W.S.; Chapman, F.A.; Raghavan, S. Carbon monoxide treatments to impart and retain muscle color in tilapia fillets. J. Food Sci. 2008, 73, C390–C399. [Google Scholar] [CrossRef]
- Topic Popovic, N.; Strunjak-Perovic, I.; Coz-Rakovac, R.; Barisic, J.; Jadan, M.; Persin Berakovic, A.; Sauerborn Klobucar, R. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol. 2012, 28, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Readman, G.D.; Owen, S.F.; Knowles, T.G.; Murrell, J.C. Species specific anaesthetics for fish anaesthesia and euthanasia. Sci. Rep. 2017, 7, 7102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.H.; Wang, Y.J.; Yu, N.; Le, Q.J.; Hu, J.B.; Yang, Y.; Kuang, S.W.; Zhang, M.; Sun, Y.B.; Gu, W.W.; et al. Transcriptome analysis reveals the influence of anaesthetic stress on the immune system of crucian carp (Carassius auratus) under the process of treatment and low concentration transport by MS-222 and Eugenol. Aquacult. Res. 2019, 50, 3138–3153. [Google Scholar] [CrossRef]
- Teles, M.; Oliveira, M.; Jerez-Cepa, I.; Franco-Martinez, L.; Tvarijonaviciute, A.; Tort, L.; Mancera, J.M. Transport and Recovery of Gilthead Sea Bream (Sparus aurata L.) Sedated With Clove Oil and MS222: Effects on Oxidative Stress Status. Front. Physiol. 2019, 10, 523. [Google Scholar] [CrossRef]
- Kenter, L.W.; Gunn, M.A.; Berlinsky, D.L. Transport Stress Mitigation and the Effects of Preanesthesia on Striped Bass. N. Am. J. Aquacult. 2019, 81, 67–73. [Google Scholar] [CrossRef]
- Fleming, G.J.; Heard, D.J.; Francis Floyd, R.; Riggs, A. Evaluation of propofol and medetomidine-ketamine for short-term immobilization of Gulf of Mexico sturgeon (Acipenser oxyrinchus de soti). J. Zoo Wildl. Med. 2003, 34, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Gressler, L.T.; Parodi, T.V.; Riffel, A.P.; DaCosta, S.T.; Baldisserotto, B. Immersion anaesthesia with tricaine methanesulphonate or propofol on different sizes and strains of silver catfish Rhamdia quelen. J. Fish. Biol. 2012, 81, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Valença-Silva, G.; Braz, M.G.; Barreto, R.E.; Salvadori, D.M.; Volpato, G.L. Low dose of the anesthetic propofol does not induce genotoxic or mutagenic effects in Nile tilapia. Trans. Am. Fish. Soc. 2014, 143, 414–419. [Google Scholar] [CrossRef]
- Valentim, A.M.; Felix, L.M.; Carvalho, L.; Diniz, E.; Antunes, L.M. A New Anaesthetic Protocol for Adult Zebrafish (Danio rerio): Propofol Combined with Lidocaine. PLoS ONE 2016, 11, e0147747. [Google Scholar] [CrossRef] [PubMed]
- Gressler, L.T.; Sutili, F.J.; da Costa, S.T.; Parodi, T.V.; Pes Tda, S.; Koakoski, G.; Barcellos, L.J.; Baldisserotto, B. Hematological, morphological, biochemical and hydromineral responses in Rhamdia quelen sedated with propofol. Fish. Physiol. Biochem. 2015, 41, 463–472. [Google Scholar] [CrossRef]
- Wang, M.; Lu, M.X. Tilapia polyculture: A global review. Aquacult. Res. 2016, 47, 2363–2374. [Google Scholar] [CrossRef]
- Obirikorang, K.A.; Asante-Tuoh, D.T.; Agbo, N.W.; Amponsah, A.K.; Skov, P.V. Anaesthetic potential of propofol for nile tilapia (Oreochromis niloticus): Effect of anaesthetic concentration and body weight. Sci. Afr. 2020, 10, e00595. [Google Scholar] [CrossRef]
- Zahran, E.; Risha, E.; Rizk, A. Comparison propofol and eugenol anesthetics efficacy and effects on general health in Nile Tilapia. Aquaculture 2021, 534, 736251. [Google Scholar] [CrossRef]
- Toutain, P.L.; Ferran, A.; Bousquet-Melou, A. Species differences in pharmacokinetics and pharmacodynamics. Handb. Exp. Pharmacol. 2010, 199, 19–48. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Araujo, M.; Batista, S.; Peixoto, M.J.; Sousa-Pinto, I.; Brotas, V.; Cunha, L.M.; Rema, P. Carotenoid deposition, flesh quality and immunological response of Nile tilapia fed increasing levels of IMTA-cultivated Ulva spp. J. Appl. Phycol. 2016, 28, 691–701. [Google Scholar] [CrossRef]
- Balfry, S.K.; Shariff, M.; Iwama, G.K. Strain differences in non-specific immunity of tilapia Oreochromis niloticus following challenge with Vibrio parahaemolyticus. Dis. Aquat. Org. 1997, 30, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Sneddon, L.U. Clinical Anesthesia and Analgesia in Fish. J. Exot. Pet Med. 2012, 21, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Bauquier, S.H.; Greenwood, J.; Whittem, T. Evaluation of the sedative and anaesthetic effects of five different concentrations of alfaxalone in goldfish, Carassius auratus. Aquaculture 2013, 396, 119–123. [Google Scholar] [CrossRef]
- Gebresenbet, G.; Aradom, S.; Bulitta, F.S.; Hjerpe, E. Vibration levels and frequencies on vehicle and animals during transport. Biosys. Eng. 2011, 110, 10–19. [Google Scholar] [CrossRef]
- Talling, J.C.; Lines, J.A.; Wathes, C.M.; Waran, N.K. The acoustic environment of the domestic pig. J. Agric. Eng. Res. 1998, 71, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rebouças, P.; Almeida, J.; Paula, W.; Rocha, R.; Almeida, S.; Barbosa-Filho, J.; Rebouças-Filho, P. Effect of Mechanical Vibrations during Transport Operations of Nilo Tilapia (Oreochromis niloticus). J. Agric. Sci. 2019, 11, 295–308. [Google Scholar] [CrossRef]
- Barcellos, L.J.G.; Nicolaiewsky, S.; de Souza, S.M.G.; Lulhier, F. Plasmatic levels of cortisol in the response to acute stress in Nile tilapia, Oreochromis niloticus (L.), previously exposed to chronic stress. Aquacult. Res. 1999, 30, 437–444. [Google Scholar] [CrossRef]
- Volstorf, J.; Maia, C. Oreochromis niloticus (Findings). In FishEthoBase; World Wide Web Electronic Publication: Version 2.223; Fish Ethology and Welfare Group, 2021; Available online: http://fishethobase.net/db/31/findings/ (accessed on 22 September 2021).
- Friard, O.; Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Clark, T.D.; Eliason, E.J.; Sandblom, E.; Hinch, S.G.; Farrell, A.P. Calibration of a hand-held haemoglobin analyser for use on fish blood. J. Fish. Biol. 2008, 73, 2587–2595. [Google Scholar] [CrossRef] [Green Version]
- Herath, S.S.; Haga, Y.; Satoh, S. Effects of long-term feeding of corn co-product-based diets on growth, fillet color, and fatty acid and amino acid composition of Nile tilapia, Oreochromis niloticus. Aquaculture 2016, 464, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Yeşilayer, N.; Mutlu, G.; Yıldırım, A. Effect of nettle (Urtica spp.), marigold (Tagetes erecta), alfalfa (Medicago sativa) extracts and synthetic xanthophyll (zeaxanthin) carotenoid supplementations into diets on skin pigmentation and growth parameters of electric yellow cichlid (Labidochromis caeruleus). Aquaculture 2020, 520, 734964. [Google Scholar] [CrossRef]
- Bidinotto, P.M.; Moraes, G.; Souza, R.H. Hepatic glycogen and glucose in eight tropical freshwater teleost fish: A procedure for field determinations of micro samples. Bol. Tec. CEPTA 1997, 10, 53–60. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Monteiro, S.M.; Fontainhas-Fernandes, A.; Sousa, M. An immunohistochemical study of gill epithelium cells in the Nile tilapia, Oreochromis niloticus. Folia Histochem. Cytobiol. 2010, 48, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Bernet, D.; Schmidt, H.; Meier, W.; Burkhardt-Holm, P.; Wahli, T. Histopathology in fish: Proposal for a protocol to assess aquatic pollution. J. Fish. Dis. 1999, 22, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, S.M.; Rocha, E.; Fontainhas-Fernandes, A.; Sousa, M. Quantitative histopathology of Oreochromis niloticus gills after copper exposure. J. Fish. Biol. 2008, 73, 1376–1392. [Google Scholar] [CrossRef]
- Felix, L.M.; Vidal, A.M.; Serafim, C.; Valentim, A.M.; Antunes, L.M.; Campos, S.; Matos, M.; Monteiro, S.M.; Coimbra, A.M. Ketamine-induced oxidative stress at different developmental stages of zebrafish (Danio rerio) embryos. RSC Adv. 2016, 6, 61254–61266. [Google Scholar] [CrossRef]
- Felix, L.M.; Vidal, A.M.; Serafim, C.; Valentim, A.M.; Antunes, L.M.; Monteiro, S.M.; Matos, M.; Coimbra, A.M. Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos. Chemosphere 2018, 201, 730–739. [Google Scholar] [CrossRef]
- Deng, J.; Yu, L.; Liu, C.; Yu, K.; Shi, X.; Yeung, L.W.; Lam, P.K.; Wu, R.S.; Zhou, B. Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquat. Toxicol. 2009, 93, 29–36. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Durak, I.; Yurtarslanl, Z.; Canbolat, O.; Akyol, O. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin. Chim. Acta 1993, 214, 103–104. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Massarsky, A.; Kozal, J.S.; Di Giulio, R.T. Glutathione and zebrafish: Old assays to address a current issue. Chemosphere 2017, 168, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Habig, W.H.; Jakoby, W.B. [51] Assays for differentiation of glutathione S-Transferases. In Detoxication and Drug Metabolism: Conjugation and Related Systems; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1981; Volume 77, pp. 398–405. [Google Scholar]
- Gartaganis, S.P.; Patsoukis, N.E.; Nikolopoulos, D.K.; Georgiou, C.D. Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome. Eye 2007, 21, 1406–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallin, B.; Rosengren, B.; Shertzer, H.G.; Camejo, G. Lipoprotein oxidation and measurement of thiobarbituric acid reacting substances formation in a single microtiter plate: Its use for evaluation of antioxidants. Anal. Biochem. 1993, 208, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Motulsky, H.J.; Brown, R.E. Detecting outliers when fitting data with nonlinear regression—A new method based on robust nonlinear regression and the false discovery rate. BMC Bioinform. 2006, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.I.; Galhardo, L.; Noble, C.; Damsgard, B.; Spedicato, M.T.; Zupa, W.; Beauchaud, M.; Kulczykowska, E.; Massabuau, J.C.; Carter, T.; et al. Behavioural indicators of welfare in farmed fish. Fish. Physiol. Biochem. 2012, 38, 17–41. [Google Scholar] [CrossRef] [Green Version]
- Gomulka, P.; Fornal, E.; Berecka, B.; Szmagara, A.; Ziomek, E. Pharmacokinetics of propofol in rainbow trout following bath exposure. Pol. J. Vet. Sci. 2015, 18, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Oda, A.; Messenger, K.M.; Carbajal, L.; Posner, L.P.; Gardner, B.R.; Hammer, S.H.; Cerreta, A.J.; Lewbart, G.A.; Bailey, K.M. Pharmacokinetics and pharmacodynamic effects in koi carp (Cyprinus carpio) following immersion in propofol. Vet. Anaesth. Analg. 2018, 45, 529–538. [Google Scholar] [CrossRef]
- Nilsson, N.; Nezvalova-Henriksen, K.; Tho, I. Emulsion Stability of Different Intravenous Propofol Formulations in Simulated Co-Administration with Remifentanil Hydrochloride. Pharm. Technol. Hosp. Pharm. 2019, 4, 77–87. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.M.; Brown, E.N.; Kopell, N. Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation. J. Neurosci. 2008, 28, 13488–13504. [Google Scholar] [CrossRef] [Green Version]
- McCarroll, M.N.; Gendelev, L.; Kinser, R.; Taylor, J.; Bruni, G.; Myers-Turnbull, D.; Helsell, C.; Carbajal, A.; Rinaldi, C.; Kang, H.J.; et al. Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nat. Commun. 2019, 10, 4078. [Google Scholar] [CrossRef] [Green Version]
- Thurston, R.V.; Russo, R.C.; Vinogradov, G.A. Ammonia toxicity to fishes. Effect of pH on the toxicity of the unionized ammonia species. Environ. Sci. Technol. 2002, 15, 837–840. [Google Scholar] [CrossRef]
- Oshiki, M.; Aizuka, T.; Netsu, H.; Oomori, S.; Nagano, A.; Yamaguchi, T.; Araki, N. Total ammonia nitrogen (TAN) removal performance of a recirculating down-hanging sponge (DHS) reactor operated at 10 to 20 degrees C with activated carbon. Aquaculture 2020, 520, 734963. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Q.; Mei, J.; Xie, J. Effect of 3-Aminobenzoic Acid Ethyl Ester Methanesulfonate (MS-222) on Quality of Marine Cultured Turbot (Scophthalmus maximus) during Simulated Transport in Water. Fishes 2021, 6, 20. [Google Scholar] [CrossRef]
- Lemos, C.H.D.; Ribeiro, C.V.D.; de Oliveira, C.P.B.; Couto, R.D.; Copatti, C.E. Effects of interaction between pH and stocking density on the growth, haematological and biochemical responses of Nile tilapia juveniles. Aquaculture 2018, 495, 62–67. [Google Scholar] [CrossRef]
- Rebouças, V.T.; Lima, F.R.d.S.; Cavalcante, D.d.H.; Sá, M.V.d.C.e. Reassessment of the suitable range of water pH for culture of Nile tilapia Oreochromis niloticus L. in eutrophic water. Acta Scientiarum. Anim. Sci. 2016, 38, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, W.H. The optimum hematocrit. Clin. Hemorheol. Microcirc. 2016, 64, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Soldatov, A.A. Effects of temperature, pH, and organic phosphates on fish hemoglobins. J. Evol. Biochem. Physiol. 2003, 39, 159–168. [Google Scholar] [CrossRef]
- Gholipourkanani, H.; Ahadizadeh, S. Use of propofol as an anesthetic and its efficacy on some hematological values of ornamental fish Carassius auratus. Springerplus 2013, 2, 76. [Google Scholar] [CrossRef] [Green Version]
- Gomułka, P.; Dągowski, J.; Własow, T.; Szczepkowski, M.; Czerniak, E.; Ziomek, E.; Szczerbowski, A.; Łuczyński, M.; Szkudlarek, M. Haematological and biochemical blood profile in Russian sturgeon following propofol and eugenol anaesthesia. Turkish J. Fish. Aquat. Sci. 2015, 15, 13–17. [Google Scholar]
- Martinez-Porchas, M.; Martinez-Cordova, L.R.; Ramos-Enriquez, R. Cortisol and Glucose: Reliable indicators of fish stress? Pan-Am. J. Aquat. Sci. 2009, 4, 158–178. [Google Scholar]
- Costa, L.S.; Araújo, F.G.; Paulino, R.R.; Pereira, L.J.; Rodrigues, E.J.D.; Ribeiro, P.A.P.; Rosa, P.V. Daily rhythms of cortisol and glucose and the influence of the light/dark cycle on anaesthesia in Nile tilapia (Oreochromis niloticus): Does the timing of anaesthetic administration affect the stress response? Aquacult. Res. 2019, 50, 2371–2379. [Google Scholar] [CrossRef]
- Sadoul, B.; Geffroy, B. Measuring cortisol, the major stress hormone in fishes. J. Fish. Biol. 2019, 94, 540–555. [Google Scholar] [CrossRef] [Green Version]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish. Biol. Fish. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- Laiz-Carrión, R.; Sangiao-Alvarellos, S.; Guzmán, J.M.; Martín del Río, M.P.; Míguez, J.M.; Soengas, J.L.; Mancera, J.M. Energy Metabolism in Fish Tissues Related to Osmoregulation and Cortisol Action. Fish. Physiol. Biochem. 2002, 27, 179–188. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, C.; Yang, L.; Lu, R.; Zhao, X.; Nie, G. A comparative genomics study of carbohydrate/glucose metabolic genes: From fish to mammals. BMC Genom. 2018, 19, 246. [Google Scholar] [CrossRef] [Green Version]
- Ostrensky, A.; Pedrazzani, A.S.; Vicente, A.L. Use of MS-222 (tricaine methanesulfonate) and propofol (2,6-diisopropylphenol) as anaesthetics for the tetra Astyanax altiparanae (Teleostei, Characidae). Aquacult. Res. 2016, 47, 3477–3488. [Google Scholar] [CrossRef]
- Gomułka, P.; Wlasow, T.; Szczepkowski, M.; Misiewicz, L.; Ziomek, E. The effect of propofol anaesthesia on haematological and biochemical blood profile of European whitefish. Turkish J. Fish. Aquat. Sci. 2014, 14, 331–337. [Google Scholar]
- Svobodova, Z.; Kalab, P.; Dusek, L.; Vykusova, B.; Kolarova, J.; Janouskova, D. The effect of handling and transport on the concentration of glucose and cortisol in blood plasma of common carp. Acta Vet. 1999, 68, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Goes, E.S.D.; de Lara, J.A.F.; Gasparino, E.; Goes, M.D.; Zuanazzi, J.S.G.; Lopera-Barrero, N.M.; Rodriguez, M.D.R.; de Castro, P.L.; Ribeiro, R.P. Effects of transportation stress on quality and sensory profiles of Nile tilapia fillets. Sci. Agric. 2018, 75, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Matsche, M.A. Efficacy and Physiological Response to Chemical Anesthesia in Wild Hickory Shad during Spawning Season. Mar. Coast. Fish. 2017, 9, 296–304. [Google Scholar] [CrossRef]
- Zahl, I.H.; Samuelsen, O.; Kiessling, A. Anaesthesia of farmed fish: Implications for welfare. Fish. Physiol. Biochem. 2012, 38, 201–218. [Google Scholar] [CrossRef]
- Molinero, A.; Gonzalez, J. Comparative Effects of Ms-222 and 2-Phenoxyethanol on Gilthead Sea Bream (Sparus-Aurata L) during Confinement. Comp. Biochem. Physiol. A Physiol. 1995, 111, 405–414. [Google Scholar] [CrossRef]
- Costantini, D.; Marasco, V.; Moller, A.P. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J. Comp. Physiol. B 2011, 181, 447–456. [Google Scholar] [CrossRef]
- Murphy, P.G.; Myers, D.S.; Davies, M.J.; Webster, N.R.; Jones, J.G. The antioxidant potential of propofol (2,6-diisopropylphenol). Br. J. Anaesth. 1992, 68, 613–618. [Google Scholar] [CrossRef]
- Ansley, D.M.; Lee, J.; Godin, D.V.; Garnett, M.E.; Qayumi, A.K. Propofol enhances red cell antioxidant capacity in swine and humans. Can. J. Anaesth. 1998, 45, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Gressler, L.T.; Sutili, F.J.; Loebens, L.; Saccol, E.M.H.; Pes, T.S.; Parodi, T.V.; da Costa, S.T.; Pavanato, M.A.; Baldisserotto, B. Histological and antioxidant responses in Rhamdia quelen sedated with propofol. Aquacult. Res. 2016, 47, 2297–2306. [Google Scholar] [CrossRef]
- Li, X. Glutathione and Glutathione-S-Transferase in Detoxification Mechanisms. In General and Applied Toxicology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 1–13. [Google Scholar]
- Vieira, C.E.D.; Perez, M.R.; Acayaba, R.D.; Raimundo, C.C.M.; Dos Reis Martinez, C.B. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 2018, 195, 125–134. [Google Scholar] [CrossRef]
- Kanak, E.G.; Dogan, Z.; Eroglu, A.; Atli, G.; Canli, M. Effects of fish size on the response of antioxidant systems of Oreochromis niloticus following metal exposures. Fish. Physiol. Biochem. 2014, 40, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.L.; Wu, C.H.; Chen, T.G.; Tai, Y.T.; Chang, H.C.; Lin, C.J. Effects of propofol on functional activities of hepatic and extrahepatic conjugation enzyme systems. Br. J. Anaesth. 2000, 84, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Deegan, R.J. Propofol: A review of the pharmacology and applications of an intravenous anesthetic agent. Am. J. Med. Sci. 1992, 304, 45–49. [Google Scholar] [CrossRef]
Behavior | Description | 0–6 h | 24 h |
---|---|---|---|
Swimming (S) | Fish swims without touching the floor and using the fins (no contact between abdomen and floor, but fins may touch it). | x | x |
Bottom swimming (BS) | Fish swims in contact with the tank floor using the fins. | x | x |
Inactive (I) | Fish is in the tank floor without locomotion/movement in space. | x | x |
Erratic movements (EM) | Sharp changes in direction or velocity and repeated rapid darting (fast acceleration in one direction with the use of caudal fin). | x | x |
Air stone breathing (AB) | Fish is near/in contact with the air stone with its mouth pointed to this object. | x | |
Turning (T) | Fish changes direction of movement. | x | |
Rubbing (R) | Rubbing body sides on the sides of the tank (or on the surface of other objects). | x | |
Crossings (C) | Number of times the fish crosses a virtual line. The tank was divided in 3 horizontal and 4 vertical zones by 2 and 3 imaginary lines, respectively. | x | |
Mirror stimulation (MS) | Head-butting (pushing head against the sides or bottom of the tank), biting these surfaces, or chasing own reflection in close contact with the tank sides or bottom. | x | |
Interaction with objects (IO) | Fish interacts by biting or actively touching the thermostat or thermometer or other objects inside the tank. | x |
Timepoint (h) | Groups | Response to Stimulus | Water Chemistry | |||
---|---|---|---|---|---|---|
Visual 1 | Touch 1 | Pinch 1 | pH | O2 (mg L−1) | ||
0 | 7.33 ± 0.24 AB | 7.72 ± 0.03 AB | ||||
0.5 | Control | 7/7 (100%) a | 7/7 (100%) a | 0/0(100%) a | ||
MS-222 | 5/7 (71%) ab | 4/7 (57%) a | 3/3(100%) a | |||
Propofol | 2/7 (29%) b | 0/7 (0%) b | 4/7 (57%) b | |||
1 | Control | 7/7 (100%) a | 7/7 (100%) a | 0/0(100%) a | ||
MS-222 | 6/7 (86%) ab | 5/7 (71%) a | 2/2(100%) a | |||
Propofol | 2/7 (29%) b | 0/7 (0%) b | 4/7 (57%) b | |||
3 | Control | 7/7 (100%) a | 7/7 (100%) a | 0/0(100%) a | 7.03 ± 0.22 a,A | 7.21 ± 0.52 A |
MS-222 | 6/7 (86%) ab | 5/7 (71%) a | 2/2(100%) a | 7.62 ± 0.53 b,A | 7.54 ± 0.20 A | |
Propofol | 2/7 (29%) b | 0/7 (0%) b | 4/7 (57%) b | 7.17 ± 0.25 ab,A | 7.10 ± 0.46 C | |
6 | Control | 6/7 (86%) a | 7/7 (100%) a | 0/0(100%) a | 7.49 ± 0.27 a,B | 7.55 ± 0.30 B |
MS-222 | 5/7 (71%) ab | 5/7 (71%) a | 2/2(100%) a | 7.81 ± 0.22 b,A | 7.62 ± 0.18 A | |
Propofol | 1/7 (14%) b | 0/7 (0%) b | 5/7 (71%) b | 7.74 ± 0.11 ab,C | 7.69 ± 0.08 A |
Timepoint (h) | Groups | S | BS | I | EM | AB | T | R | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | Time | # | Time | # | Time | # | Time | # | Time | ||||
0 | Control | 1.6 (0.2–4.7) h | 60 (16–110) | 0.6 (0.4–2.4) AB | 25 (5–74) | 0.8 (0.6–1.8) | 172 (85–232) | 0.6 (0.2–1.8) | 21 (15–30) a,A | 0.0 (0.0–0.2) | 0 (0–60) | 2.6 (0.8–7.1) | 2.6 (1.4–3.6) A |
MS-222 | 0.6 (0.4–2.4) | 30 (4–70) | 0.8 (0.0–2.2) AB | 53 (0–80) AB | 0.8 (0.2–2.0) AB | 213 (114–275) | 0.4 (0.0–1.2) | 16 (0–33) ab | 0.0 (0.0–0.2) | 0 (0–13) | 2.2 (1.0–5.7) A | 1.8 (1.0–3.6) | |
Propofol | 0.8 (0.2–3.9) | 47 (3–113) A | 0.2 (0.2–2.7) | 6 (2–113) | 0.6 (0.2–2.2) | 240 (46–277) A | 0.2 (0.2–2.3) | 10 (8–19) b | 0.0 (0.0–0.6) | 0 (0–6) | 1.4 (0.8–5.0) | 0.8 (0.2–5.2) | |
0.5 | Control | 2.4 (1.2–4.8) a | 86 (47–145) ab | 2.2 (0.4–2.6) a,A | 44 (4–86) | 1.8 (0.8–2.2) a | 151 (95–210) a | 1.0 (0.0–1.8) | 10 (0–42) AB | 0.0 (0.0–0.8) | 0 (0–30) | 2.0 (0.6–5.9) a | 2.0 (0.2–6.3) AB |
MS-222 | 1.2 (0.2–2.4) ab | 24 (5–139) a | 1.6 (0.4–2.4) ab,A | 53 (29–101) A | 1.6 (0.8–2.0) ab,A | 205 (57–275) a | 0.4 (0.0–0.8) | 4 (0–17) | 0.0 (0.0–0.6) | 0 (0–15) | 1.4 (0.0–3.0) ab,AB | 1.2 (0.2–2.8) | |
Propofol | 0.2 (0.0–2.2) b | 134 (0–301) b,AB | 0.2 (0.0–1.9) b | 15 (0–237) | 0.4 (0.0–1.7) b | 9 (0–141) b,AB | 0.0 (0.0–0.8) | 0 (0–10) | 0.0 (0.0–0.2) | 0 (0–30) | 0.4 (0.0–1.6) b | 0.0 (0.0–3.5) | |
1 | Control | 2.0 (0.4–4.6) a | 105 (7–188) ab | 1.2 (0.8–2.8) A | 48 (16–62) | 1.4 (0.8–3.0) a | 124 (53–238) a | 0.6 (0.0–2.8) a | 13 (0–52) a,AB | 0.0 (0.0–1.0) | 0 (0–112) | 2.2 (1.0–4.2) a | 1.2 (0.6–4.4) AB |
MS-222 | 0.0 (0.0–2.2) b | 0 (0–153) a | 0.0 (0.0–2.6) AB | 0 (0–68) AB | 0.4 (0.2–1.8) ab,AB | 300 (79–300) a | 0.0 (0.0–0.4) b | 0 (0–5) b | 0.0 (0.0–0.2) | 0 (0–11) | 0.0 (0.0–2.0) b,AB | 0.0 (0.0–1.8) | |
Propofol | 0.2 (0.2–1.0) b | 135 (6–301) b,AB | 0.2 (0.0–2.0) | 62 (0–258) | 0.4 (0.0–1.4) b | 4 (0–187) b,AB | 0.0 (0.0–0.6) b | 0 (0–11) b | 0.0 (0.0–0.2) | 0 (0–6) | 0.4 (0.0–1.6) b | 0.4 (0.0–3.6) | |
3 | Control | 2.0 (0.4–3.0) | 68 (28–208) ab | 0.4 (0.0–1.6) B | 18 (0–40) | 1.4 (1.2–2.4) a | 201 (51–259) a | 0.2 (0.0–1.2) | 2 (0–22) B | 0.0 (0.0–0.4) | 0 (0–220) | 1.0 (0.2–2.8) | 0.6 (0.0–2.4) B |
MS-222 | 0.6 (0.0–2.6) | 28 (0–95) a | 0.6 (0.0–2.4) AB | 28 (0–76) AB | 1.0 (0.2–2.0) ab,AB | 257 (119–301) a | 0.2 (0.0–0.8) | 1 (0–10) | 0.0 (0.0–0.4) | 0 (0–33) | 1.0 (0.0–1.6) AB | 0.6 (0.0–1.4) | |
Propofol | 0.8 (0.0–2.0) | 239 (0–301) b,AB | 0.4 (0.0–1.2) | 9 (0–62) | 0.0 (0.0–0.4) b | 0 (0–300) b,AB | 0.0 (0.0–1.2) | 0 (0–78) | 0.0 (0.0–1.2) | 0 (0–76) | 0.4 (0.0–6.0) | 0.4 (0.0–6.0) | |
6 | Control | 2.0 (0.8–3.5) a | 58 (40–81) ab | 1.0 (0.4–3.1) a,AB | 22 (5–82) | 1.4 (1.0–2.9) a | 215 (93–238) a | 0.2 (0.0–2.3) | 2 (0–39) B | 0.0 (0.0–0.6) | 0 (0–123) | 0.8 (0.2–4.2) | 0.8 (0.0–2.7) AB |
MS-222 | 0.2 (0.0–1.0) b | 16 (0–292) a | 0.0 (0.0–1.0) b,B | 0 (0–33) B | 0.2 (0.0–1.2) b,B | 267 (0–300) a | 0.0 (0.0–0.4) | 0 (0–11) | 0.0 (0.0–0.0) | 0 (0–0) | 0.0 (0.0–1.0) B | 0.4 (0.0–1.6) | |
Propofol | 0.4 (0.2–1.4) b | 298 (4–300) b,B | 0.0 (0.0–1.2) b | 0 (0–243) | 0.0 (0.0–0.8) b | 0 (0–51) b,B | 0.2 (0.0–0.8) | 2 (0–15) | 0.0 (0.0–0.4) | 0 (0–182) | 2.0 (0.0–5.4) | 0.4 (0.0–4.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Félix, L.; Correia, R.; Sequeira, R.; Ribeiro, C.; Monteiro, S.; Antunes, L.; Silva, J.; Venâncio, C.; Valentim, A. MS-222 and Propofol Sedation during and after the Simulated Transport of Nile tilapia (Oreochromis niloticus). Biology 2021, 10, 1309. https://doi.org/10.3390/biology10121309
Félix L, Correia R, Sequeira R, Ribeiro C, Monteiro S, Antunes L, Silva J, Venâncio C, Valentim A. MS-222 and Propofol Sedation during and after the Simulated Transport of Nile tilapia (Oreochromis niloticus). Biology. 2021; 10(12):1309. https://doi.org/10.3390/biology10121309
Chicago/Turabian StyleFélix, Luís, Rita Correia, Rita Sequeira, Cristiana Ribeiro, Sandra Monteiro, Luís Antunes, José Silva, Carlos Venâncio, and Ana Valentim. 2021. "MS-222 and Propofol Sedation during and after the Simulated Transport of Nile tilapia (Oreochromis niloticus)" Biology 10, no. 12: 1309. https://doi.org/10.3390/biology10121309
APA StyleFélix, L., Correia, R., Sequeira, R., Ribeiro, C., Monteiro, S., Antunes, L., Silva, J., Venâncio, C., & Valentim, A. (2021). MS-222 and Propofol Sedation during and after the Simulated Transport of Nile tilapia (Oreochromis niloticus). Biology, 10(12), 1309. https://doi.org/10.3390/biology10121309