Biological Efficacy of Cochlioquinone-9, a Natural Plant Defense Compound for White-Backed Planthopper Control in Rice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Design
2.2. White-Backed Planthopper Rearing
2.3. Extraction of cq-9
2.4. Evaluation of the Effect of cq-9 on Rice
2.5. DNA Extraction
2.6. RNA Extraction
2.7. Quantitative Real-Time PCR (qPCR) Analysis
2.8. Statistical SPSS Analysis
3. Results
3.1. Identification of cq-9 and Comparison of Extraction Amount
3.2. WBPH Resistance of cq-9
3.3. Comparison of the Effect of cq-9 on Plant Growth
3.4. Comparison of Relative Gene Expression Levels of Plant Defense Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagadhara, D.; Ramesh, S.; Pasalu, I.C.; Rao, Y.K.; Sarma, N.P.; Reddy, V.D.; Rao, K.V. Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper (Sogatella furcifera). Theor. Appl. Genet. 2004, 109, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Divya, D.; Sahu, N.; Reddy, P.S.; Nair, S.; Bentur, J.S. RNA-Sequencing Reveals Differentially Expressed Rice Genes Functionally Associated with Defense against BPH and WBPH in RILs Derived from a Cross between RP2068 and TN1. Rice 2021, 14, 27. [Google Scholar] [CrossRef]
- Tan, G.X.; Weng, Q.M.; Ren, X.; Huang, Z.; Zhu, L.L.; He, G.C. Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity 2004, 92, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, N.; Gao, X.; Chang, Z.; Zhang, L.; Zhou, G.; Guo, D.; Zeng, Z.; Li, W.; Akinyemi, I.A.; et al. Genome sequence of a rice pest, the white-backed planthopper (Sogatella furcifera). GigaScience 2017, 6, giw004. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Lehman, H. The Pesticide Question: Environment, Economics and Ethics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Ramesh, K.; Padmavathi, G.; Deen, R.; Pandey, M.K.; Jhansi Lakshmi, V.; Bentur, J.S. Whitebacked planthopper Sogatella furcifera (Horváth) (Homoptera: Delphacidae) resistance in rice variety Sinna Sivappu. Euphytica 2014, 200, 139–148. [Google Scholar] [CrossRef]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Dawson, G.W.; Hallahan, D.L.; Mudd, A.; Patel, M.M.; Pickett, J.A.; Wadhams, L.J.; Wallsgrove, R.M. Secondary plant metabolites as targets for genetic modification of crop plants for pest resistance. Pestic. Sci. 1989, 27, 191–201. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Z.-H.; Chen, Y.-C.; Liu, H.-X.; Li, H.-H.; Tan, G.-H.; Li, S.-N.; Guo, X.-L.; Zhang, W.-M. Cytotoxic cochlioquinone derivatives from the endophytic fungus Bipolaris sorokiniana derived from Pogostemon cablin. Fitoterapia 2016, 110, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Dini-Andreote, F. Endophytes: The second layer of plant defense. Trends Plant Sci. 2020, 25, 319–322. [Google Scholar] [CrossRef]
- De Sassi, C.; Müller, C.B.; Krauss, J. Fungal plant endosymbionts alter life history and reproductive success of aphid predators. Proc. R. Soc. B Biol. Sci. 2006, 273, 1301–1306. [Google Scholar] [CrossRef]
- Taechowisan, T.; Lu, C.; Shen, Y.; Lumyong, S. Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 2005, 151, 1691–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Zhao, Y.; Bu, H.; Tan, S.; Dong, G.; Liu, J.; Wang, M.; Jiang, J.; Yuan, B.; Li, R. Cochlioquinone derivative CoB1 induces cytostatic autophagy in lung cancer through miRNA-125b and Foxp3. Phytomedicine 2021, 93, 153742. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lin, J.; Cheng, L.; Zhou, H.; Chen, S.; Liu, F.; Li, R.; Qiu, Y. Identification of a novel planthopper resistance gene from wild rice (Oryza rufipogon Griff.). Crop J. 2020, 8, 1057–1070. [Google Scholar] [CrossRef]
- Georghiou, G.P. Pest Resistance to Pesticides; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Stout, M.J. Chapter 1—Host-Plant Resistance in Pest Management. In Integrated Pest Management; Abrol, D.P., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 1–21. [Google Scholar]
- Heinrichs, E.A. Genetic Evaluation for Insect Resistance in Rice; International Rice Research Institute: Los Baños, Philippines, 1985. [Google Scholar]
- Ling, Y.; Ang, L.; Weilin, Z. Current understanding of the molecular players involved in resistance to rice planthoppers. Pest Manag. Sci. 2019, 75, 2566–2574. [Google Scholar] [CrossRef]
- Nagata, T. Monitoring on Insecticide Resistance of the Brown Planthopper and the White Backed Planthopper in Asia. J. Asia-Pac. Entomol. 2002, 5, 103–111. [Google Scholar] [CrossRef]
- Denno, R.F.; Perfect, J.R. Planthoppers: Their Ecology and Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Nayak, A.; Baig, M.J.; Mohapatra, P.K.; Behera, K.S. Effect of insect feeding on biochemical changes in rice plant. J. Entomol. Zool. Stud. 2019, 7, 138–142. [Google Scholar]
- Mauricio, R.; Rausher, M.D.; Burdick, D.S. Variation in the defense strategies of plants: Are resistance and tolerance mutually exclusive? Ecology 1997, 78, 1301–1311. [Google Scholar] [CrossRef]
- Kanno, H.; Hasegawa, M.; Kodama, O. Accumulation of salicylic acid, jasmonic acid and phytoalexins in rice, Oryza sativa, infested by the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Appl. Entomol. Zool. 2012, 47, 27–34. [Google Scholar] [CrossRef]
- Yoganathan, K.; Yang, L.-K.; Rossant, C.; Huang, Y.; Ng, S.; Butler, M.S.; Buss, A.D. Cochlioquinones and Epi-Cochlioquinones Antagonists of the Human Chemokine Receptor CCR5 from Bipolaris brizae and Stachybotrys chartarum. J. Antibiot. 2004, 57, 59–63. [Google Scholar] [CrossRef]
- Machida, T.; Higashi, K.; Ogawara, H. Cochlioquinone A, an inhibitor of diacylglycerol kinase. J. Antibiot. 1995, 48, 1076–1080. [Google Scholar] [CrossRef]
- Do Nascimento, A.M.; Soares, M.G.; da Silva Torchelsen, F.K.V.; de Araujo, J.A.V.; Lage, P.S.; Duarte, M.C.; Andrade, P.H.R.; Ribeiro, T.G.; Coelho, E.A.F.; do Nascimento, A.M. Antileishmanial activity of compounds produced by endophytic fungi derived from medicinal plant Vernonia polyanthes and their potential as source of bioactive substances. World J. Microbiol. Biotechnol. 2015, 31, 1793–1800. [Google Scholar] [CrossRef]
- Schaeffer, J.M.; Frazier, E.G.; Bergstrom, A.R.; Williamson, J.M.; Liesch, J.M.; Goetz, M.A. Cochlioquinone A, a nematocidal agent which competes for specific [3H] ivermectin binding sites. J. Antibiot. 1990, 43, 1179–1182. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-R.; Jan, R.; Park, S.-G.; Handoyo, T.; Lee, G.-S.; Yun, S.; Jang, Y.-H.; Du, X.-X.; Lee, T.; Kwon, Y.-S.; et al. The Quantitative Trait Loci Mapping of Rice Plant and the Components of Its Extract Confirmed the Anti-Inflammatory and Platelet Aggregation Effects In Vitro and In Vivo. Antioxidants 2021, 10, 1691. [Google Scholar] [CrossRef]
- Jang, Y.-H.; Park, J.-R.; Kim, K.-M. Antimicrobial Activity of Chrysoeriol 7 and Chochlioquinone 9, White-Backed Planthopper-Resistant Compounds, Against Rice Pathogenic Strains. Biology 2020, 9, 382. [Google Scholar] [CrossRef]
- Miyagawa, H.; Nagai, S.; Tsurushima, T.; Sato, M.; Ueno, T.; Fukami, H. Phytotoxins produced by the plant pathogenic fungus Bipolaris bicolor El-1. Biosci. Biotechnol. Biochem. 1994, 58, 1143–1145. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, T.; Yao, K.; Hamano, K.; Hosoya, T.; Kagasaki, T.; Furukawa, Y.; Haruyama, H.; Sato, S.; Koga, T.; Tsujita, Y. Epi-cochlioquinone A, a novel acyl-CoA: Cholesterol acyltransferase inhibitor produced by Stachybotrys bisbyi. J. Antibiot. 1996, 49, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Ahn, I.-P.; Kim, S.; Lee, Y.-H. Resistance induced by benzothiadiazole perturbs the biotrophrice interaction, but not necrotroph-rice one. Plant Pathol. J. 2001, 17, 375. [Google Scholar]
- Masuma, R.; Shiomi, K.; Ōmura, S. Helminth electron transport inhibitors produced by fungi. In Physiology and Genetics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 247–271. [Google Scholar]
- Lim, C.-H. Structures and biological activities of phytotoxins produced by the plant pathogenic fungus Bipolaris cynodontis cynA. J. Pestic. Sci. 1998, 23, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Bhonwong, A.; Stout, M.J.; Attajarusit, J.; Tantasawat, P. Defensive Role of Tomato Polyphenol Oxidases against Cotton Bollworm (Helicoverpa armigera) and Beet Armyworm (Spodoptera exigua). J. Chem. Ecol. 2009, 35, 28–38. [Google Scholar] [CrossRef]
- Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006, 4, 147. [Google Scholar] [CrossRef]
- Agrawal, A.D. Pharmacological activities of flavonoids: A review. Int. J. Pharm. Sci. Nanotechnol. 2011, 4, 1394–1398. [Google Scholar] [CrossRef]
- Jan, R.; Khan, M.A.; Asaf, S.; Lee, I.-J.; Bae, J.-S.; Kim, K.-M. Overexpression of OsCM alleviates BLB stress via phytohormonal accumulation and transcriptional modulation of defense-related genes in Oryza sativa. Sci. Rep. 2020, 10, 19520. [Google Scholar] [CrossRef] [PubMed]
- van Wees, S.C.M.; de Swart, E.A.M.; van Pelt, J.A.; van Loon, L.C.; Pieterse, C.M.J. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2000, 97, 8711. [Google Scholar] [CrossRef] [Green Version]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.; Yoo, H.; Dudareva, N. Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nat. Chem. Biol. 2011, 7, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Afsheen, S.; Xin, Z.; Han, X.; Lou, Y. OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. Physiol. Plant. 2013, 147, 340–351. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhong, S.; Li, Q.; Zhu, Z.; Lou, Y.; Wang, L.; Wang, J.; Wang, M.; Li, Q.; Yang, D.; et al. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol. J. 2007, 5, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bai, X.; Wang, X.; Chu, C. OsWRKY71, a rice transcription factor, is involved in rice defense response. J. Plant Physiol. 2007, 164, 969–979. [Google Scholar] [CrossRef]
- Choi, N.Y.; Lee, E.; Lee, S.G.; Choi, C.H.; Park, S.R.; Ahn, I.; Bae, S.C.; Hwang, C.H.; Hwang, D.-J. Genome-wide expression profiling of OsWRKY superfamily genes during infection with Xanthomonas oryzae pv. oryzae using real-time PCR. Front. Plant Sci. 2017, 8, 1628. [Google Scholar] [CrossRef]
- Abdullah-Zawawi, M.-R.; Ahmad-Nizammuddin, N.-F.; Govender, N.; Harun, S.; Mohd-Assaad, N.; Mohamed-Hussein, Z.-A. Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice. Sci. Rep. 2021, 11, 19678. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, D.; Xu, D.; Zhang, M. Southern rice black-streaked dwarf virus: A white-backed planthopper-transmitted fijivirus threatening rice production in Asia. Front. Microbiol. 2013, 4, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control | Cultivars | p Value | |||
---|---|---|---|---|---|
Cheongcheong | Nagdong | TN1 | |||
Rf value | 0.43 ± 0.01 a z | 0.42 ± 0.01 a | 0.42 ± 0.01 a | 0.42 ± 0.01 a | NS |
Concentration of cq-9 (ng/g) | - | 7.81 ± 0.29 b | 5.43 ± 0.21 c | 9.67 ± 1.17 a | <0.001 ** |
Week z | Cultivars | Control | cq-9 Treatment | p Value | |
---|---|---|---|---|---|
Bio-scoring value | 1 | Cheongcheong | 1.2 ± 0.6 y | 1.2 ± 0.6 | 0.172 |
Nagdong | 1.3 ± 0.7 | 2.6 ± 1.7 | 0.124 | ||
TN1 | 1.4 ± 1.0 | 1.5 ± 1.3 | 0.304 | ||
2 | Cheongcheong | 3.2 ± 0.6 | 1.4 ± 0.8 | 0.004 ** | |
Nagdong | 5.2 ± 0.6 | 3.0 ± 2.4 | 0.072 | ||
TN1 | 3.7 ± 1.0 | 2.2 ± 2.0 | 0.051 | ||
3 | Cheongcheong | 5.0 ± 0.0 | 1.6 ± 0.8 | 0.008 ** | |
Nagdong | 6.1 ± 1.2 | 4.7 ± 1.6 | 0.099 | ||
TN1 | 7.9 ± 1.4 | 4.4 ± 1.5 | 0.008 ** | ||
Chlorophyll content (SPAD) | 3 | Cheongcheong | 5.0 ± 0.0 | 1.6 ± 0.8 | 0.057 |
Nagdong | 6.1 ± 1.2 | 4.7 ± 1.6 | 0.379 | ||
TN1 | 7.9 ± 1.4 | 4.4 ± 1.5 | 0.002 ** |
Cultivars | DAI z | Control | cq-9 | p Value | WBPH | cq-9 + WBPH | p Value |
---|---|---|---|---|---|---|---|
Cheongcheong | 1 | 13.4 ± 0.4 y | 13.8 ± 0.1 | 0.060 | 13.4 ± 0.3 | 13.5 ± 0.3 | 0.585 |
2 | 14.5 ± 0.2 | 15.3 ± 0.5 | 0.025 * | 14.9 ± 0.07 | 16.4 ± 0.2 | 0.007 ** | |
3 | 16.3 ± 0.5 | 16.9 ± 0.4 | 0.007 ** | 16.0 ± 0.3 | 16.7 ± 0.4 | 0.0004 ** | |
CNDH 3 | 1 | 14.5 ± 0.2 | 11.7 ± 0.5 | 0.003 ** | 13.7 ± 0.4 | 11.8 ± 0.1 | 0.0006 ** |
2 | 15.8 ± 0.7 | 16.1 ± 0.5 | 0.237 | 15.8 ± 0.6 | 16.4 ± 0.5 | 0.006 | |
3 | 15.9 ± 0.3 | 15.8 ± 0.7 | 0.618 | 15.7 ± 0.4 | 15.9 ± 0.6 | 0.836 | |
CNDH 42-2 | 1 | 16.1 ± 0.2 | 14.0 ± 0.7 | 0.008 ** | 10.9 ± 0.5 | 15.6 ± 0.5 | 0.005 ** |
2 | 14.5 ± 0.6 | 15.1 ± 0.5 | 0.003 ** | 15.4 ± 0.5 | 15.6 ± 0.5 | 0.096 | |
3 | 16.6 ± 0.1 | 16.6 ± 0.1 | 0.688 | 16.3 ± 0.2 | 15.7 ± 0.5 | 0.062 | |
Nagdong | 1 | 15.7 ± 1.5 | 15.4 ± 0.5 | 0.549 | 15.3 ± 1.1 | 15.8 ± 0.7 | 0.833 |
2 | 15.7 ± 1.5 | 16.7 ± 0.5 | 0.144 | 15.8 ± 0.5 | 16.1 ± 0.6 | 0.031 * | |
3 | 15.7 ± 1.6 | 15.5 ± 0.5 | 0.760 | 15.4 ± 1.0 | 16.0 ± 0.6 | 0.596 | |
TN1 | 1 | 17.1 ± 0.8 | 16.6 ± 0.5 | 0.160 | 15.8 ± 0.6 | 15.6 ± 0.6 | 0.228 |
2 | 17.4 ± 0.4 | 17.2 ± 0.4 | 0.372 | 15.9 ± 0.6 | 15.8 ± 0.6 | 0.146 | |
3 | 17.5 ± 0.4 | 1.7 ± 0.4 | 0.077 | 15.9 ± 0.6 | 17.8 ± 0.1 | 0.002 ** | |
CNDH 45 | 1 | 13.7 ± 1.2 | 14.5 ± 0.9 | 0.037 * | 12.3 ± 1.6 | 15.7 ± 0.5 | 0.027 * |
2 | 13.3 ± 0.5 | 14.3 ± 0.7 | 0.041 * | 11.9 ± 0.9 | 15.7 ± 0.5 | 0.008 ** | |
3 | 15.2 ± 0.7 | 15.7 ± 0.1 | 0.180 | 15.0 ± 0.4 | 15.4 ± 0.1 | 0.584 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.-H.; Yun, S.; Park, J.-R.; Kim, E.-G.; Yun, B.-J.; Kim, K.-M. Biological Efficacy of Cochlioquinone-9, a Natural Plant Defense Compound for White-Backed Planthopper Control in Rice. Biology 2021, 10, 1273. https://doi.org/10.3390/biology10121273
Jang Y-H, Yun S, Park J-R, Kim E-G, Yun B-J, Kim K-M. Biological Efficacy of Cochlioquinone-9, a Natural Plant Defense Compound for White-Backed Planthopper Control in Rice. Biology. 2021; 10(12):1273. https://doi.org/10.3390/biology10121273
Chicago/Turabian StyleJang, Yoon-Hee, Sopheap Yun, Jae-Ryoung Park, Eun-Gyeong Kim, Byoung-Ju Yun, and Kyung-Min Kim. 2021. "Biological Efficacy of Cochlioquinone-9, a Natural Plant Defense Compound for White-Backed Planthopper Control in Rice" Biology 10, no. 12: 1273. https://doi.org/10.3390/biology10121273
APA StyleJang, Y. -H., Yun, S., Park, J. -R., Kim, E. -G., Yun, B. -J., & Kim, K. -M. (2021). Biological Efficacy of Cochlioquinone-9, a Natural Plant Defense Compound for White-Backed Planthopper Control in Rice. Biology, 10(12), 1273. https://doi.org/10.3390/biology10121273