Long-Alkyl Chain Functionalized Imidazo[1,5-a]pyridine Derivatives as Blue Emissive Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Remarks
2.2. General Synthesis of Pyridyl Ketones
2.3. General Synthesis of CX Ligands
2.4. General Synthesis of BF2 Compounds
2.5. Computational Details
3. Results and Discussion
3.1. Syntheses and Characterization
3.2. Optical Properties in Solution
3.3. Optical Properties PMMA Films
3.4. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volpi, G. Luminescent Imidazo[1,5-a]pyridine Scaffold: Synthetic Heterocyclization Strategies-Overview and Promising Applications. Asian J. Org. Chem. 2022, 11, e202200171. [Google Scholar]
- Volpi, G.; Rabezzana, R. Imidazo[1,5-a]pyridine derivatives: Useful, luminescent and versatile scaffolds for different applications. New J. Chem. 2021, 45, 5737–5743. [Google Scholar] [CrossRef]
- Kamal, A.; Ramakrishna, G.; Janaki Ramaiah, M.; Viswanath, A.; Subba Rao, A.V.; Bagul, C.; Mukhopadyay, D.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Design, synthesis and biological evaluation of imidazo[1,5-a]pyridine-PBD conjugates as potential DNA-directed alkylating agents. Med. Chem. Commun. 2013, 4, 697. [Google Scholar]
- Kamal, A.; Rao, A.V.S.; Nayak, V.L.; Reddy, N.V.S.; Swapna, K.; Ramakrishna, G.; Alvala, M. Synthesis and biological evaluation of imidazo[1,5-a]pyridine-benzimidazole hybrids as inhibitors of both tubulin polymerization and PI3K/Akt pathway. Org. Biomol. Chem. 2014, 12, 9864–9880. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Baig, M.H.; Ahmad, S.; Ahmad Siddiqui, S.; Srivastava, A.K.; Srinivasan, K.V.; Ansari, I.A. Design, Synthesis, Evaluation and Thermodynamics of 1-Substituted Pyrirylimidazo[1,5-a]Pyridine Derivates as Cysteine Protease Inhibitors. PLoS ONE 2013, 8, 69982. [Google Scholar]
- Ge, Y.Q.; Li, F.R.; Zhang, Y.J.; Bi, Y.S.; Cao, X.Q.; Duan, G.Y.; Wang, J.W.; Liu, Z.L. Synthesis, crystal structure, optical properties and antibacterial evaluation of novel imidazo[1,5-a]pyridine derivatives bearing a hydrazone moiety. Luminescence 2013, 29, 293–300. [Google Scholar] [CrossRef]
- Nirogi, R.; Mohammed, A.R.; Shinde, A.K.; Bogaraju, N.; Gagginapalli, S.R.; Ravella, S.R.; Kota, L.; Bhyra-puneni, G.; Muddana, N.R.; Benade, V.; et al. Synthesis and SAR of Imidazo[1,5-a]pyridine derivatives as 5-HT4 receptor partial agonists for the treatment of cognitive disorders associated with Alzheimer’s disease. Eur. J. Med. Chem. 2015, 103, 289. [Google Scholar]
- Ge, Y.; Xing, X.; Liu, A.; Ji, R.; Shen, S.; Cao, X. A novel imidazo[1,5-a]pyridine-rhodamine FRET system as an efficient ratiometric fluorescent probe for Hg2+ in living cells. Dye. Pigment. 2017, 146, 136–142. [Google Scholar] [CrossRef]
- Chen, S.; Li, H.; Hou, P. A novel imidazo[1,5-a]pyridine-based fluorescent probe with a large Stokes shift for imaging hydrogen sulfide. Sens. Actuators B 2018, 256, 1086. [Google Scholar]
- Chen, S.; Hou, P.; Sun, J.; Wang, H.; Liu, L. Imidazo[1,5-α]pyridine-based fluorescent probe with a large Stokes shift for specific recognition of sulfite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 225, 117508. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Zhang, Q.; Li, D.; Li, Y. A One-Dimensional Cadmium Coordination Polymer: Synthesis, Structure, and Application as Luminescent Sensor for Cu2+ and CrO42–/Cr2O72– Ions. Eur. J. Inorg. Chem. 2021, 14, 1349. [Google Scholar] [CrossRef]
- Priyanga, S.; Khamrang, T.; Velusamy, M.; Karthi, S.; Ashokkumar, B.; Mayilmurugan, R. Coordination geometry-induced optical imaging of L-cysteine in cancer cells using imidazopyridine-based copper(II) complexes. Dalton Trans. 2019, 48, 1489. [Google Scholar] [PubMed]
- Hoshi, K.; Itaya, M.; Tahara, K.; Matsumoto, A.; Tabata, A.; Nagamune, H.; Yoshida, Y.; Hase, E.; Minamikawa, T.; Yasui, T.; et al. Two-photon excitable boron complex based on tridentate imidazo[1,5-a]pyridine ligand for heavy-atom-free mitochondria-targeted photodynamic thera-py. RSC Adv. 2021, 11, 26403. [Google Scholar]
- Volpi, G.; Garino, C.; Priola, E.; Diana, E.; Gobetto, R.; Buscaino, R.; Viscardi, G.; Barolo, C. Facile syntesis of novel blue light and large Stokes shift emitting tetradentate polyazines based on imidazo[1,5-a]pyridine–Part 2. Dye. Pigment. 2017, 143, 284. [Google Scholar]
- Álvarez, C.M.; Álvarez-Miguel, L.; García-Rodríguez, R.; Miguel, D. Complexes with 3-(pyridin-2-yl)imidazo[1,5-a]pyridine ligands by spontaneous dimerization of pyridine-2-carboxaldehyde within the coordination sphere of manganese(ii) in a one-pot reaction. Dalton Trans. 2012, 41, 7041–7046. [Google Scholar] [CrossRef] [PubMed]
- Fresta, E.; Volpi, G.; Garino, C.; Barolo, C.; Costa, R.D. Contextualizing yellow light-emitting electrochemical cells based on a blue-emitting imidazo-pyridine emitter. Polyhedron 2018, 140, 129–137. [Google Scholar] [CrossRef]
- Guckian, A.L.; Doering, M.; Ciesielski, M.; Walter, O.; Hjelm, J.; O’Boyle, N.M.; Henry, W.; Browne, W.R.; McGarvey, J.J.; Vos, J.G. Assessment of intercomponent interaction in phenylene bridged dinuclear ruthenium(ii) and osmium(ii) polypyridyl complexes. Dalton Trans. 2004, 33, 3943–3949. [Google Scholar] [CrossRef] [Green Version]
- Murai, T.; Nagaya, E.; Miyahara, K.; Shibahara, F.; Maruyama, T. Synthesis and Characterization of Boron Complexes of Imidazo[1,5-a]pyridylalkyl Alcohols. Chem. Lett. 2013, 42, 828–830. [Google Scholar] [CrossRef]
- Yagishita, F.; Kinouchi, T.; Hoshi, K.; Tezuka, Y.; Jibu, Y.; Karatsu, T.; Uemura, N.; Yoshida, Y.; Mino, T.; Sakamoto, M.; et al. Highly efficient blue emission from boron complexes of 1-(o-hydroxyphenyl)imidazo[1,5-a]pyridine. Tetrahedron 2018, 74, 3728–3733. [Google Scholar] [CrossRef]
- Yagishita, F.; Hoshi, K.; Mukai, S.; Kinouchi, T.; Katayama, T.; Yoshida, Y.; Minagawa, K.; Furube, A.; Imada, Y. Effect of Phenolic Substituent Position in Boron Complexes of Imidazo[1,5-a]pyridine. Asian J. Org. Chem. 2022, 11, e202200040. [Google Scholar] [CrossRef]
- Volpi, G.; Priola, E.; Garino, C.; Daolio, A.; Rabezzana, R.; Benzi, P.; Giordana, A.; Diana, E.; Gobetto, R. Blue fluorescent zinc(II) complexes based on tunable imidazo[1,5-a]pyridines. Inorganica Chim. Acta 2020, 509, 119662. [Google Scholar] [CrossRef]
- Volpi, G.; Magnano, G.; Benesperi, I.; Saccone, D.; Priola, E.; Gianotti, V.; Milanesio, M.; Conterosito, E.; Barolo, C.; Viscardi, G. One pot synthesis of low-cost emitters with large Stokes’ shift. Dye. Pigment. 2017, 137, 152–164. [Google Scholar] [CrossRef]
- Nakatsuka, M.; Shimamura, T.K. Organic electroluminescent element. Chem. Abstr. 2001, 134, 170632. [Google Scholar]
- Boens, N.; Leen, V.; Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130. [Google Scholar]
- Squeo, B.M.; Pasini, M. BODIPY platform: A tunable tool for green to NIR OLEDs. Supramol. Chem. 2020, 32, 56–70. [Google Scholar] [CrossRef]
- Brom, J.M., Jr.; Langer, J.L. Electroluminescence from pyrromethene dyes in doped polymer hosts. Alloys Compd. 2002, 1, 112. [Google Scholar]
- Ardizzoia, G.A.; Brenna, S.; Therrien, S. The Adaptable Coordination Chemistry of 6-Chloro-2-(quinolin-2-yl)-2,4-dihydro-1H-benzo[d][1,3]oxazine Towards Zinc(II) and Mercury(II). Eur. J. Inorg. Chem. 2010, 21, 3365. [Google Scholar]
- Ardizzoia, G.A.; Brenna, S.; Durini, S.; Therrien, B.; Trentin, I. The Goldilocks principle in action: Synthesis and structural characterization of a novel {Cu4(μ3-OH)4} cubane stabilized by monodentate ligands. Dalton Trans. 2013, 42, 12265. [Google Scholar]
- Ardizzoia, G.A.; Bea, M.; Brenna, S.; Therrien, B. A Quantitative Description of the σ-Donor and π-acceptor Properties of Substituted Phenanthrolines. Eur. J. Inorg. Chem. 2016, 23, 3829. [Google Scholar]
- Ardizzoia, G.A.; Brenna, S.; Civati, F.; Colombo, V.; Sironi, A. A phosphorescent copper(i) coordination polymer with sodium 3,5-dimethyl-4-sulfonate pyrazolate. Crystengcomm 2017, 19, 6020–6027. [Google Scholar] [CrossRef]
- Marchesi, A.; Brenna, S.; Ardizzoia, G.A. Synthesis and emissive properties of a series of tetrahydro (imidazo[1,5-a]pyrid-3-yl)phenols: A new class of large Stokes shift organic dyes. Dye. Pigment. 2018, 161, 457–463. [Google Scholar] [CrossRef]
- Colombo, G.; Ardizzoia, G.A.; Brenna, S. Imidazo[1,5-a]pyridine-based derivatives as highly fluorescent dyes. Inorganica Chim. Acta 2022, 535, 120849. [Google Scholar] [CrossRef]
- Ardizzoia, G.A.; Brenna, S.; Durini, S.; Therrien, B.; Veronelli, M. Synthesis, Structure, and Photphysical Properties of Blue-Emitting Zinv(II) Complexes with 3-aryl-Substituted 1-Pyridylimidazo[1,5-a]pyridine Ligands. Eur. J. Inorg. Chem. 2014, 26, 4310. [Google Scholar] [CrossRef]
- Ardizzoia, G.A.; Brenna, S.; Durini, S.; Therrien, B. Synthesis and characterization of luminescent zinc(II) complexes with a N,N-bidentate 1-pyridylimidazo[1,5-a]pyridine ligand. Polyhedron 2015, 90, 214–220. [Google Scholar] [CrossRef]
- Durini, S.; Ardizzoia, G.A.; Therrien, B.; Brenna, S. Tuning the fluorescence emission in mononuclear heteroleptic trigonal silver(i) complexes. New J. Chem. 2017, 41, 3006–3014. [Google Scholar] [CrossRef]
- Ardizzoia, G.A.; Ghiotti, D.; Therrien, B.; Brenna, S. Homoleptic complexes of divalent metals bearing N,O-bidentate imidazo[1,5-a]pyridine ligands: Synthesis, X-ray characterization and catalytic activity in the Heck reaction. Inorganica Chim. Acta 2018, 471, 384–390. [Google Scholar] [CrossRef]
- Ardizzoia, G.A.; Colombo, G.; Therrien, B.; Brenna, S. Tuning the Fluorescence Emission and HOMO-LUMO Band Gap in Homoleptic Zinc(II) Complexes with N,O-Bidentate (Imidazo[1,5-a]pyrid-3-yl)phenols. Eur. J. Inorg. Chem. 2019, 13, 1825. [Google Scholar] [CrossRef]
- Strianese, M.; Brenna, S.; Ardizzoia, G.A.; Guarnieri, D.; Lamberti, M.; D’Auria, I.; Pellecchia, C. Imidazo-pyridine-based zinc(ii) complexes as fluorescent hydrogen sulfide probes. Dalton Trans. 2021, 50, 17075–17085. [Google Scholar] [CrossRef]
- D’Alterio, M.C.; D’Auria, I.; Gaeta, L.; Tedesco, C.; Brenna, S.; Pellecchia, C. Are Well Performing Catalysts for the Ring Opening Polymerization of l-Lactide under Mild Laboratory Conditions Suitable for the Industrial Process? The Case of New Highly Active Zn(II) Catalysts. Macromolecules 2022, 55, 5115–5122. [Google Scholar] [CrossRef]
- Colombo, G.; Romeo, A.; Ardizzoia, G.A.; Furrer, J.; Therrien, B.; Brenna, S. Boron difluoride functionalized (tetrahydroimidazo [1,5-a]pyridine-3-yl)phenols: Highly fluorescent blue emissive materials. Dye. Pigment. 2020, 182, 108636. [Google Scholar] [CrossRef]
- Colombo, G.; Ardizzoia, G.A.; Furrer, J.; Therrien, B.; Brenna, S. Driving the Emission Towards Blue by Controlling the HOMO-LUMO Energy Gap in BF2-Functionalized 2-(Imidazo[1,5-a]pyridine-3-yl)phenols. Chem. Eur. J. 2021, 27, 12380. [Google Scholar] [CrossRef] [PubMed]
- Colombo, G. Blue Emissive Materials for Optoelectronic Devices. Ph.D. Thesis, Università degli Studi dell’Insubria, Como, Italy, April 2022. [Google Scholar]
- Te Velde, G.; Bickelhaupt, F.M.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931. [Google Scholar] [CrossRef]
- Fonseca Guerra, C.; Snijders, J.G.; Te Velde, G.; Baerends, E.J. Towards an order-N- DFT method. Theor. Chem. Acc. 1998, 99, 391. [Google Scholar] [CrossRef]
- Baerends, E.J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.; Bickelhaupt, F.M.; Bo, C.; Boerrigter, P.M.; Cavallo, L.; Chong, D.P.; et al. ADF2014, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands; Available online: http://www.scm.com (accessed on 31 March 2023).
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456. [Google Scholar] [CrossRef] [PubMed]
- Chong, D.P. Augmenting basis set for time-dependent density functional theory calculation of excitation energies: Slater-type orbitals for hydrogen to krypton. Mol. Phys. 2005, 103, 749. [Google Scholar] [CrossRef]
- Klamt, A.; Schürmann, G.J. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Phys. 1993, 2, 799. [Google Scholar] [CrossRef]
- Klamt, A.; Jonas, V. Treatment of the outlying charge in continuum solvation models. J. Chem. Phys. 1996, 105, 9972. [Google Scholar] [CrossRef]
- Pye, C.C.; Ziegler, T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theor. Chem. Acc. 1999, 101, 396. [Google Scholar] [CrossRef]
- Wu, Q.; Han, S.; Ren, X.; Lu, H.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Pd-Catalyzed Alkylation of (Iso)quinolines and Arenes: 2-acylpyridine Compounds as Alkylation Reagents. Org. Lett. 2018, 20, 6345–6348. [Google Scholar] [CrossRef]
Solvent | λabs (nm) | ε (M−1 cm−1) | λem (nm) | λex (nm) | τ (ns) | ΦPL |
---|---|---|---|---|---|---|
Dichloromethane | 348 | 139,605 | 446 | 349 | 3.39 | 0.19 |
Methanol | 344 | 115,184 | 442 | 346 | 3.65 | 0.18 |
Ethyl acetate | 346 | 20,759 | 446 | 348 | 3.59 | 0.20 |
Toluene | 351 | 179,357 | 450 | 351 | 3.68 | 0.19 |
Tetrahydrofuran | 348 | 23,484 | 447 | 349 | 3.84 | 0.26 |
Compound | λabs (nm) | ε (M−1 cm−1) | λem (nm) | λex (nm) | τ (ns) | ΦPL |
---|---|---|---|---|---|---|
C1 | 339 | 129,282 | 472 | 340 | 2.97 | 0.06 |
C1-BF2 | 347 | 117,956 | 446 | 348 | 3.53 | 0.22 |
C3 | 337 | 94,620 | 471 | 340 | 3.04 | <0.05 |
C3-BF2 | 348 | 139,605 | 446 | 349 | 3.39 | 0.19 |
C5 | 339 | 118,515 | 476 | 341 | 3.05 | <0.05 |
C5-BF2 | 348 | 198,650 | 448 | 350 | 3.41 | 0.22 |
C10 | 338 | 104,460 | 473 | 339 | 2.86 | 0.05 |
C10-BF2 | 348 | 71,097 | 449 | 349 | 2.94 | 0.19 |
C18 | 340 | 193,810 | 477 | 344 | 2.65 | 0.06 |
C18-BF2 | 348 | 193,189 | 449 | 348 | 2.95 | 0.20 |
LRBF2 | 298 K a | 273 K b | 233 K b | 193 K b |
---|---|---|---|---|
C1-BF2 | 0.22 | 0.22 | 0.31 | 0.30 |
C3-BF2 | 0.19 | 0.19 | 0.23 | 0.24 |
C5-BF2 | 0.22 | 0.23 | 0.26 | 0.28 |
C10-BF2 | 0.19 | 0.20 | 0.24 | 0.25 |
C18-BF2 | 0.20 | 0.22 | 0.25 | 0.24 |
Compound | λem (nm) | λex (nm) | τ (ns) | ΦPL |
---|---|---|---|---|
C1-BF2 | 440 | 344 | 1.70 (22.8%) 4.13 (77.2%) | 0.11 |
C3-BF2 | 440 | 344 | 1.66 (14.0%) 3.90 (86.0%) | 0.11 |
C5-BF2 | 440 | 344 | 1.74 (22.0%) 4.03 (78.0%) | 0.07 |
C10-BF2 | 440 | 344 | 1.49 (14.0%) 3.99 (86.0%) | 0.11 |
C18-BF2 | 440 | 343 | 1.79 (21.8%) 4.06 (78.2%) | 0.14 |
H/L + 1 | H/L | H − 1/L | H − 1/L + 1 | |
---|---|---|---|---|
C1-BF2 | 84.3% | 7.7% | 2.2% | 1.9% |
C3-BF2 | 85.0% | 7.7% | 1.7% | 1.7% |
C5-BF2 | 84.3% | 8.1% | 1.8% | 1.8% |
C10-BF2 | 83.5% | 8.2% | 2.5% | 1.8% |
C18-BF2 | 83.9% | 8.3% | 2.0% | 1.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, G.; Cinco, A.; Ardizzoia, G.A.; Brenna, S. Long-Alkyl Chain Functionalized Imidazo[1,5-a]pyridine Derivatives as Blue Emissive Dyes. Colorants 2023, 2, 179-193. https://doi.org/10.3390/colorants2020012
Colombo G, Cinco A, Ardizzoia GA, Brenna S. Long-Alkyl Chain Functionalized Imidazo[1,5-a]pyridine Derivatives as Blue Emissive Dyes. Colorants. 2023; 2(2):179-193. https://doi.org/10.3390/colorants2020012
Chicago/Turabian StyleColombo, Gioele, Anita Cinco, G. Attilio Ardizzoia, and Stefano Brenna. 2023. "Long-Alkyl Chain Functionalized Imidazo[1,5-a]pyridine Derivatives as Blue Emissive Dyes" Colorants 2, no. 2: 179-193. https://doi.org/10.3390/colorants2020012
APA StyleColombo, G., Cinco, A., Ardizzoia, G. A., & Brenna, S. (2023). Long-Alkyl Chain Functionalized Imidazo[1,5-a]pyridine Derivatives as Blue Emissive Dyes. Colorants, 2(2), 179-193. https://doi.org/10.3390/colorants2020012