Thulium-Doped Silica Fibers with Enhanced Fluorescence Lifetime and Their Application in Ultrafast Fiber Lasers
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Preforms and Optical Fibers
2.2. Characterization Methods
2.3. Mode-Locked Fiber Laser Setup
2.4. Theoretical Evaluation of Energy-Transfer Coefficients
- Only three energy levels 3H6 (level 0), 3F4 (level 1) and 3H4 (level 3) are considered, because the energy level 3H5 (level 2) is having very fast non-radiative multi-phonon transition to the energy level 3F4 (1). Therefore, also the cross-relaxation process CR20↔11 is neglected.
- Since we study only the decay part of the fluorescence, we neglect light-induced transitions described by Wij rates.
- The ASE (Amplified Spontaneous Emission) effect is neglected.
3. Results
3.1. Refractive Index and Concentration Profiles, Optical Absorption, and Emission Spectra
3.2. Fluorescence Lifetime and Energy-Transfer Coefficients
3.3. Laser Characteristics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zervas, M.N.; Codemard, C.A. High Power Fiber Lasers: A Review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Digonnet, M.J.F. Rare Earth Doped Fiber Lasers and Amplifiers; Marcel Dekker: New York, NY, USA, 1993; p. 109. [Google Scholar]
- Hanna, D.C.; Percival, R.M.; Smart, R.G.; Tropper, A.C. Efficient and tunable operation of a Tm-doped fibre laser. Opt. Commun. 1990, 75, 283–286. [Google Scholar] [CrossRef]
- Jackson, S.D.; King, T.A. Theoretical modeling of Tm-doped silica fiber lasers. J. Lightwave Technol. 1999, 17, 948–956. [Google Scholar] [CrossRef]
- Walsh, B.M.; Barnes, N.P. Comparison of Tm:ZBLAN and Tm:silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm. Appl. Phys. B 2004, 78, 325–333. [Google Scholar] [CrossRef]
- Simpson, D.A.; Gibbs, W.E.; Collins, S.F.; Blanc, W.; Dussardier, B.; Monnom, G.; Peterka, P.; Baxter, G.W. Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation. Opt. Express 2008, 16, 13781–13799. [Google Scholar] [CrossRef] [PubMed]
- Klimentov, D.; Dvoyrin, V.V.; Halder, A.; Paul, M.C.; Das, S.; Bhadra, S.K.; Sorokina, I.T. Emission decay and energy transfer in Yb/Tm Y-codoped fibers based on nano-modified glass. Opt. Mater. 2015, 42, 270–275. [Google Scholar] [CrossRef]
- Agger, S.D.; Povlsen, J.H. Emission and absorption cross section of thulium doped silica fibers. Opt. Express 2006, 14, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.L.; Cole, B. Amplification Device Utilizing Thulium Doped Modified Silicate Optical Fiber. U.S. Patent 6,924,928 B2, 2 August 2005. [Google Scholar]
- Gebavi, H.; Taccheo, S.; Milanese, D. The enhanced two micron emission in thulium doped tellurite glasses. Opt. Mater. 2013, 35, 1792–1796. [Google Scholar] [CrossRef]
- Kasik, I.; Podrazky, O.; Mrazek, J.; Cajzl, J.; Aubrecht, J.; Probostova, J.; Peterka, P.; Honzatko, P.; Dhar, A. Erbium and Al2O3 nanocrystals-doped silica optical fibers. Bull. Pol. Acad. Sci.-Tech. Sci. 2014, 62, 641–646. [Google Scholar] [CrossRef]
- Podrazky, O.; Kasik, I.; Pospisilova, M.; Matejec, V. Use of alumina nanoparticles for preparation of erbium-doped fibers. In Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2007), Lake Buena Vista, FL, USA, 21–25 October 2007; pp. 246–247. [Google Scholar]
- Blanc, W.; Dussardier, B.; Monnom, G.; Peretti, R.; Jurdyc, A.M.; Jacquier, B.; Foret, M.; Roberts, A. Erbium emission properties in nanostructured fibers. Appl. Opt. 2009, 48, G119–G124. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.C.; Friebele, E.J.; Burdett, A.A.; Rhonehouse, D.L.; Fontana, J.; Kim, W.; Bowman, S.R.; Shaw, L.B.; Sanghera, J.; Zhang, J.; et al. Nanoparticle doping for high power fiber lasers at eye-safer wavelengths. Opt. Express 2017, 25, 13903–13915. [Google Scholar] [CrossRef] [PubMed]
- Dhar, A.; Kasik, I.; Podrazky, O.; Matejec, V.; Dussardier, B. Preparation and properties of Er-doped ZrO2 nanocrystalline phase-separated preforms of optical fibers by MCVD process. Int. J. Appl. Ceram. Technol. 2012, 9, 341–348. [Google Scholar] [CrossRef]
- Mrázek, J.; Kašík, I.; Procházková, L.; Čuba, V.; Girman, V.; Puchý, V.; Blanc, W.; Peterka, P.; Aubrecht, J.; Cajzl, J.; et al. YAG Ceramic Nanocrystals Implementation into MCVD Technology of Active Optical Fibers. Appl. Sci. 2018, 8, 833. [Google Scholar] [CrossRef]
- Cajzl, J.; Peterka, P.; Honzátko, P.; Mrázek, J.; Podrazký, O.; Todorov, F.; Gladkov, P.; Sahu, J.K.; Nunez-Velazquez, M.; Nekvindová, P.; et al. Characterization of fluorescence lifetime of Tm-doped fibers with increased quantum conversion efficiency. Proc. SPIE 2015, 9450, 945017. [Google Scholar]
- Peterka, P.; Honzátko, P.; Kašík, I.; Cajzl, J.; Podrazký, O. Thulium-doped optical fibers and components for fiber lasers in 2 µm spectral range. Proc. SPIE 2014, 9441, 94410B. [Google Scholar] [CrossRef]
- Pisarik, M.; Peterka, P.; Zvanovec, S.; Baravets, Y.; Todorov, F.; Kasik, I.; Honzatko, P. Fused fiber components for “eye-safe” spectral region around 2 μm. Opt. Quantum Electron. 2014, 46, 603–611. [Google Scholar] [CrossRef]
- Sobon, G. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: Graphene and topological insulators [invited]. Photonics Res. 2015, 3, A56–A63. [Google Scholar] [CrossRef]
- Krajewska, A.; Pasternak, I.; Sobon, G.; Sotor, J.; Przewloka, A.; Ciuk, T.; Sobieski, J.; Grzonka, J.; Abramski, K.M.; Strupinski, W. Fabrication and applications of multi-layer graphene stack on transparent polymer. Appl. Phys. Lett. 2017, 110, 041901. [Google Scholar] [CrossRef]
- Sobon, G.; Sotor, J.; Pasternak, I.; Krajewska, A.; Strupinski, W.; Abramski, K. All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser. Opt. Express 2015, 23, 9339–9346. [Google Scholar] [CrossRef] [PubMed]
- Cajzl, J.; Peterka, P.; Honzátko, P.; Podrazký, O.; Kamrádek, M.; Aubrecht, J.; Proboštová, J.; Kašík, I. Evaluation of energy transfer coefficients in Tm doped fibers for fiber lasers. Proc. SPIE 2017, 10603. [Google Scholar] [CrossRef]
- Eichhorn, M. Numerical Modeling of Tm-Doped Double-Clad Fluoride Fiber Amplifiers. IEEE J. Quantum Electron. 2005, 41, 1574–1581. [Google Scholar] [CrossRef]
- Peterka, P.; Kasik, I.; Dhar, A.; Dussardier, B.; Blanc, W. Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime. Opt. Express 2011, 19, 2773–2781. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.X.; Zhang, Q.Y.; Yang, G.F.; Jiang, Z.H. Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm3+. J. Fluoresc. 2007, 17, 301–307. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, A.S.S.; de Oliveira, S.L.; de Sousa, D.F.; Nunes, L.A.O.; Hewak, D.W. Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass. J. Phys. Condens. Matter 2002, 14, 9495–9505. [Google Scholar] [CrossRef]
- Taher, M.; Gebavi, H.; Taccheo, S.; Milanese, D.; Balda, R. Novel approach towards cross-relaxation energy transfer calculation applied on highly thulium doped tellurite glasses. Opt. Express 2011, 19, 26269–26274. [Google Scholar] [CrossRef] [PubMed]
- Peterka, P.; Honzatko, P.; Becker, M.; Todorov, F.; Pisarik, M.; Podrazky, O.; Kasik, I. Monolithic Tm-doped fiber laser at 1951 nm with deep-UV femtosecond-induced FBG pair. IEEE Photonics Technol. Lett. 2013, 25, 1623–1625. [Google Scholar] [CrossRef]
- Faure, B.; Blanc, W.; Dussardier, B.; Monnom, G. Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy. J. Non-Cryst. Solids 2007, 353, 2767–2773. [Google Scholar] [CrossRef]
- Blanc, W.; Sebastian, T.L.; Dussardier, B.; Michel, C.; Faure, B.; Ude, M.; Monnom, G. Thulium environment in a silica doped optical fibre. J. Non-Cryst. Solids 2008, 354, 435–439. [Google Scholar] [CrossRef]
- Dussardier, B.; Blanc, W.; Peterka, P. Tailoring of the local environment of active ions in rare-earth- and transition-metal-doped optical fibres, and potential applications. In Selected Topics on Optical Fiber Technology; Yasin, M., Harun, S.W., Arof, H., Eds.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Dennis, M.L.; Duling, I.N., III. Experimental study of sideband generation in femtosecond fiber lasers. IEEE J. Quantum Electron. 1994, 30, 1469. [Google Scholar] [CrossRef]
- Smith, N.J.; Blow, K.J.; Andonovic, I. Sideband generation through perturbations to the average soliton model. IEEE J. Lightwave Technol. 1992, 10, 1329. [Google Scholar] [CrossRef]
- Nilsson, J.; Clarkson, W.A.; Selvas, R.; Sahu, J.K.; Turner, P.W.; Alam, S.-U.; Grudinin, A.B. High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers. Opt. Fiber Technol. 2008, 10, 5–30. [Google Scholar] [CrossRef]
Fiber No. | Preparation SD/NP * | Matrix | Δn (∙10−3) | Cutoff LP11 (nm) | Al2O3 (mol.%) | GeO2 (mol.%) | Tm3+ (ppm) AVG | Fluorescence Lifetime (μs) |
---|---|---|---|---|---|---|---|---|
SG1365 | SD | Tm-Si | 3.5 | 880 | 0 | 0 | 70 | 220 |
SG1364 ** | SD | Tm-Si-P | 7 | 1050 | 0 | 0 | 5150 | 62 |
SG1401 | SD | Tm-Si-Al | 2 | 1900 | 0.33 | 0 | 1740 | 323 |
SG1360A | SD | Tm-Si-Al | 8 | 1560 | 4.8 | 0 | 2000 | 542 |
SG1201R | NP | Tm-Si-Al | 27 | 1520 | 11.7 | 0 | 1000 | 756 |
SG1338A | SD | Tm-Si-Al-Ge | 7 | >1600 | 3.4 | 0.6 | 1280 | 488 |
SG1338B | NP | Tm-Si-Al-Ge | 7 | >1600 | 4.2 | 0.1 | 650 | 500 |
SG1283 | SD | Tm-Si-Al-Ge | 9.5 | MM | 4.1 | 1.4 | 1140 | 495 |
SG1290 | SD | Tm-Si-Al-Ge | 10 | 1500 | 4.5 | 2 | 3000 | 515 |
SG1361A | SD | Tm-Si-Al-Ge | 7.5 | 1020 | 6 | 7 | 1590 | 500 |
Fiber Label (No.) | Preparation Details |
---|---|
SD (SG1290) | Conventional solution doping from solution of 1 mol L−1 AlCl3 and 0.04 mol L−1 TmCl3·6H2O |
Fiber | C (Tm3+) (·1025 m−3) | τ (3F4) Low (μs) | τ (3F4) High (μs) | τ (3H4) (μs) | τ (3H4) lowC (μs) | k3011 (·10−22 m3/s) | k1130 (·10−24 m3/s) |
---|---|---|---|---|---|---|---|
SD (SG1290) | 6.375 | 515 | 420 | 30 | 58 | 2.52 | 3.44 |
Tm-Fiber Length (cm) | Pth a (mW) | Ppump_max b (mW) | S/N c (dB) | FWHM d (nm) | λc e (nm) | Pavg f (mW) | E g (pJ) | τ h (fs) | TBP i |
---|---|---|---|---|---|---|---|---|---|
34 | 224 | 242 | 71 | 4.3 | 1886 | 7.3 | 223 | 975 | 0.35 |
55 | 196 | 290 | 70 | 4.4 | 1903.5 | 7.8 | 238 | 990 | 0.35 |
74 | 208 | 290 | 69 | 5.02 | 1919.8 | 8 | 244 | 905 | 0.37 |
98 | 210 | 255 | 70 | 4.34 | 1929.3 | 7.5 | 229 | 1034 | 0.36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cajzl, J.; Peterka, P.; Kowalczyk, M.; Tarka, J.; Sobon, G.; Sotor, J.; Aubrecht, J.; Honzátko, P.; Kašík, I. Thulium-Doped Silica Fibers with Enhanced Fluorescence Lifetime and Their Application in Ultrafast Fiber Lasers. Fibers 2018, 6, 66. https://doi.org/10.3390/fib6030066
Cajzl J, Peterka P, Kowalczyk M, Tarka J, Sobon G, Sotor J, Aubrecht J, Honzátko P, Kašík I. Thulium-Doped Silica Fibers with Enhanced Fluorescence Lifetime and Their Application in Ultrafast Fiber Lasers. Fibers. 2018; 6(3):66. https://doi.org/10.3390/fib6030066
Chicago/Turabian StyleCajzl, Jakub, Pavel Peterka, Maciej Kowalczyk, Jan Tarka, Grzegorz Sobon, Jaroslaw Sotor, Jan Aubrecht, Pavel Honzátko, and Ivan Kašík. 2018. "Thulium-Doped Silica Fibers with Enhanced Fluorescence Lifetime and Their Application in Ultrafast Fiber Lasers" Fibers 6, no. 3: 66. https://doi.org/10.3390/fib6030066
APA StyleCajzl, J., Peterka, P., Kowalczyk, M., Tarka, J., Sobon, G., Sotor, J., Aubrecht, J., Honzátko, P., & Kašík, I. (2018). Thulium-Doped Silica Fibers with Enhanced Fluorescence Lifetime and Their Application in Ultrafast Fiber Lasers. Fibers, 6(3), 66. https://doi.org/10.3390/fib6030066