Abstract
Wind turbine blades (WTBs) have always been considered one of the greatest engineering achievements. They primarily use glass fiber-reinforced polymers (GFRPs) because of their lightweight nature, impressive strength-to-weight ratio, and durability. Until now, typical disposal methods of End-of-Life (EoL) WTBs are landfill or incineration. However, such practices are neither environmentally sustainable nor compliant with current regulations. This study investigates a low-temperature solvolysis process using a poly(ethylene glycol)/NaOH system under ambient pressure for efficient decomposition of the polyester matrix, promoting the potential of chemical recycling as an alternative to landfilling and incineration by offering a viable method for recovering glass fibers from WTB waste. A parametric study evaluated the influence of reaction time (4–5.5 h) and catalyst-to-resin ratio (0.1–2.0 g NaOH per g resin) on solvolysis efficiency. Optimal conditions (200 g PEG200, 12.5 g NaOH, 10 g GFRP, 5.5 h) achieved an ~80% decomposition efficiency and fibers exhibiting minimal surface degradation. SEM and EDX analyses confirmed limited morphological damage, while excessive NaOH (>15 g) caused notable etching of the glass fibers. ICP-OES of liquid residues detected high Na (780 mg/L) and Si (139 mg/L) concentrations, verifying partial dissolution of the fiber structure under strongly alkaline conditions. After applying a commercial sizing agent (Hydrosize HP2-06), TGA confirmed ~1.2% sizing mass, and nanoindentation analysis showed the interfacial modulus and hardness of re-sized fibers improved by over 70% compared to unsized recycled fibers, approaching the performance of virgin fibers.