Pulp Particle Classification Based on Optical Fiber Analysis and Machine Learning Techniques
Abstract
:1. Introduction
2. Experimental Section
3. Models and Methods
3.1. Image Analysis Techniques
3.1.1. Image Segmentation
3.1.2. Particle Characterization
3.2. Machine Learning
3.2.1. Data Processing
3.2.2. Lasso Regression
3.2.3. Support Vector Machine
3.2.4. Feed-Forward Neural Network
3.2.5. Recurrent Neural Network
4. Results
4.1. Data Processing
4.2. Machine Learning
4.2.1. Lasso Regression
4.2.2. Support Vector Machine
4.2.3. Feed-Forward Neural Networks
4.2.4. Recurrent Neural Networks
4.3. Figures, Tables and Schemes
5. Discussion
5.1. Image Analysis and Data Processing
5.2. Machine Learning
5.3. Future Investigations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dannelly, W. Advancements in Fiber Analysis Techniques: The Future of Improving Pulp Quality. 2021. Available online: https://library.e.abb.com/public/7320c5d8f04a48daa4580229f39c93a5/Future%20of%20Fiber_PPL_SeptOct21.pdf (accessed on 30 March 2023).
- FSCN Research Centre. NeoPulp. Available online: https://www.miun.se/Forskning/forskningsprojekt/pagaende-forskningsprojekt/neopulp (accessed on 1 June 2023).
- Karlsson, H. Fibre Guide—Fibre Analysis and Process Applications in the Pulp and Paper Industry; AB Lorentzen & Wettre: Kista, Sweden, 2006; pp. 5–8, 51–68. [Google Scholar]
- Österholm, H. Fiber analysis with online and virtual measurements enables new closed loop control strategies for pulp quality. Pulp Pap. Logist. 2021, 12, 10–13. [Google Scholar]
- Aronsson, M. On 3D Fibre Measurements of Digitized Paper from Microscopy to Fibre Network. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2002. [Google Scholar]
- Axelsson, M. Image Analysis for Volumetric Characterisation of Microstructure. Ph.D. Thesis, Swedish University of Agricultural Sciences, Centre for Image Analysis, Uppsala, Sweden, 2009. [Google Scholar]
- Paciornik, S.; d’Almeida, J. Digital microscopy and image analysis applied to composite materials charecterizaation. Rev. Matér. 2010, 15, 172–181. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012; pp. 1–19. [Google Scholar]
- Pandey, M.E.; Rautaray, S.S.E. Machine Learning: Theoretical Foundations and Practical Applications; Springer: Singapore, 2021; pp. 57–87. [Google Scholar]
- Salvador, J. Example-Based Super Resolution; Elsvier: Amsterdam, The Netherlands, 2017; pp. 113–127. [Google Scholar]
- Donaldson, L. Analysis of fibres using microscopy. In Handbook of Textile Fibre Structure Fundamentals and Manufactured Polymer Fibres, 1st ed.; Woodhead Publishing: Scion, New Zealand, 2009; Chapter 4; pp. 121–153. [Google Scholar]
- Berg, P.; Lingqvist, O. Pulp, Paper, and Packaging in the Next Decade: Transformational Change; McKinsey & Company: Chicago, IL, USA, 2019; Available online: https://www.mckinsey.com/industries/packaging-and-paper/our-insights/pulp-paper-and-packaging-in-the-next-decade-transformational-change (accessed on 30 March 2023).
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; pp. 163–168, 775. [Google Scholar]
- Kalavathi Devi, T.; Priyanka, E.; Sakthivel, P. Paper quality enhancement and model prediction using machine learning techniques. Results Eng. 2023, 17, 100950. [Google Scholar] [CrossRef]
- Nisi, K.; Nagaraj, B.; Agalya, A. Tuning of a PID controller using evolutionary multi objective optimization methodologies and application to the pulp and paper industry. Int. J. Mach. Learn. Cybern. 2019, 10, 2015–2025. [Google Scholar] [CrossRef]
- Jauhar, S.; Raj, P.; Kamble, S.; Pratap, S.; Gupta, S.; Belhadi, A. A deep learning-based approach for performance assessment and prediction: A case study of pulp and paper industries. Ann. Oper. Res. 2022, 2022, 1–27. [Google Scholar] [CrossRef]
- Narciso, D.A.; Martins, F. Application of machine learning tools for energy efficiency in industry: A review. Energy Rep. 2020, 6, 1181–1199. [Google Scholar] [CrossRef]
- Othen, R.; Cloppenburg, F.; Gries, T. Using machine learning to predict paperboard properties—A case study. Nord. Pulp Pap. Res. J. 2022, 38, 27–46. [Google Scholar] [CrossRef]
- Parente, A.; de Souza, M., Jr.; Valdman, A.; Folly, R. Data Augmentation Applied to Machine Learning-Based Monitoring of a Pulp and Paper Process. Processes 2019, 7, 958. [Google Scholar] [CrossRef]
- Talebjedi, B.; Laukkanen, T.; Holmberg, H.; Vakkilainen, E.; Syri, S. Energy simulation and variable analysis of refining process in thermo-mechanical pulp mill using machine learning approach. Math. Comput. Model. Dyn. Syst. 2021, 27, 562–585. [Google Scholar] [CrossRef]
- Talebjedi, B.; Laukkanen, T.; Holmberg, H.; Vakkilainen, E.; Syri, S. Advanced energy-saving optimization strategy in thermo-mechanical pulping by machine learning approach. Nord. Pulp Pap. Res. J. 2022, 37, 434–452. [Google Scholar] [CrossRef]
- ISO 5263-3:2023, IDT; Pulps—LaboratoryWet Disintegration—Part 3: Disintegration of Mechanical Pulps at ≥85 °C. International Organization for Standardization: Geneva, Switzerland, 2023.
- ABB. L&W Fiber Tester Plus Testing and Industry-Specific Instruments; ABB Group: Kista, Sweden, 2020. [Google Scholar]
- ISO 16065-2:2014, IDT; Pulps—Determination of Fibre Length by Automated Optical Analysis—Part 2: Unpolarized Light Method. International Organization for Standardization: Geneva, Switzerland, 2014.
- Fiber Length of Pulp and Paper by Automated Optical Analyzer Using Polarized Light, Test Method TAPPI/ANSI T 271 om-23; Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 2023.
- Hyll, K.; Farahari, F.; Mattson, L. Optical Methods for Fines and Filler Size Characterization: Evaluation and Comparison; Technical report; Innventia: Stockholm, Sweden, 2016. [Google Scholar]
- Fiber Length of Pulp by Projection, Test Method TAPPI T 232 cm-23; Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 2023.
- Fiber Length of Pulp by Classification, Test Method TAPPI T 233 cm-15; Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 2015.
- ISO 16065-1:2014, IDT; Pulps—Determination of Fibre Length by Automated Optical Analysis—Part 1: Polarized Light Method. Standard, International Organization for Standardization: Geneva, Switzerland, 2014.
- Page, D.H.; Seth, R.S.; Jordan, B.D.; Barbe, M. Curl, crimps, kinks and microcompressions in pulp fibres—their origin, measurement and significance. In Papermaking Raw Materials, Trans. of the VIIIth Fund. Res. Symp. Oxford; Punton, V., Ed.; FRC: Manchester, UK, 1985; pp. 183–227. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Statistics Notes: Diagnostic tests 1: Sensitivity and specificity. Br. Med. J. 1994, 308, 1552. [Google Scholar] [CrossRef] [PubMed]
- Hartigan, J.A.; Wong, M.A. A k-means clustering algorithm. J. R. Stat. Soc. Ser. Appl. Stat. 1979, 28, 100–108. [Google Scholar]
- Yeo, I.K.; Johnson, R. A new family of power transformations to improve normality or symmetry. Biometrika 2000, 87, 954–959. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Yuan, G.X.; Chang, K.W.; Hsieh, C.J.; Lin, C.J. A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification. J. Mach. Learn. Res. 2010, 11, 3183–3234. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical Learning with Sparsity; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–3, 23–24. [Google Scholar]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Tay, J.K.; Narasimhan, B.; Hastie, T. Elastic Net Regularization Paths for All Generalized Linear Models. J. Stat. Softw. 2023, 106, 1–31. [Google Scholar] [CrossRef]
- Ben-Hur, A.; Horn, D.; Siegelmann, H.T.; Vapnik, V. Support Vector Clustering. J. Mach. Learn. Res. 2001, 2, 125–137. [Google Scholar] [CrossRef]
- Gholami, R.; Fakhari, N. Handbook of Neural Computation; Academic Press: Cambridge, MA, USA, 2017; pp. 515–535. [Google Scholar] [CrossRef]
- Pisner, D.A.; Schnyer, D.M. Machine Learning; Academic Press: Cambridge, MA, USA, 2020; pp. 101–121. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zhou, X.; Liu, H.; Shi, C.; Liu, J. The basics of deep learning. In Deep Learning on Edge Computing Devices; Elsevier: San Diego, CA, USA, 2022; Chapter 2; pp. 19–36. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Ketkar, N. Stochastic Gradient descent. In Deep Learning with Python: A Hands-on Introduction; Apress: Berkeley, CA, USA, 2017; pp. 113–132. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Kostadinov, S. Recurrent Neural Networks with Python Quick Start Guide; Packt Puplishing: Kista, Sweden, 2018. [Google Scholar]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. In Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, QC, Canada, 13 December 2014. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 1 June 2023).
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman & Hall: London, UK, 1986; p. 48. [Google Scholar]
Predictor | Symbol | Dataset |
---|---|---|
Contour length | 1, 2 | |
Mean width | W | 1, 2 |
Shape factor | S | 1 |
Area-based fibrillation | 1 | |
Perimeter-based fibrillation | 1 | |
Projected length | 2 | |
Mean light attenuation | 2 | |
Fibrillation index | F | 2 |
Page’s and Jordan’s curl index | C | 2 |
Normalized variance | V | 2 |
Normalized max. curvature | K | 2 |
Sensitivity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Data | Transf. | L. att. | Accuracy | Fiber | Fines | Ribbon | Stump | Shive | Other |
Lasso | 2 | Binary | 0.964 | 0.944 | 0.989 | 0.991 | 0.970 | 0.909 | 0.200 | |
2 | Yeo–J. | 0.936 | 0.917 | 0.978 | 0.972 | 0.879 | 0.909 | 0.000 | ||
2 | Binary | 0.932 | 0.944 | 0.989 | 0.972 | 0.758 | 0.909 | 0.200 | ||
2 | None | 0.925 | 0.917 | 0.967 | 0.953 | 0.879 | 0.818 | 0.200 | ||
2 | Yeo–J. | 0.907 | 0.917 | 0.978 | 0.925 | 0.758 | 0.909 | 0.200 | ||
2 | None | 0.904 | 0.917 | 0.978 | 0.915 | 0.758 | 0.818 | 0.400 | ||
1 | Yeo–J. | 0.765 | 0.879 | 0.882 | 0.738 | 0.602 | 0.273 | 0.222 | ||
1 | None | 0.708 | 0.759 | 0.842 | 0.690 | 0.519 | 0.455 | 0.111 | ||
SVM | 2 | Binary | 0.954 | 0.917 | 0.989 | 0.981 | 0.970 | 0.818 | 0.200 | |
2 | None | 0.943 | 0.917 | 1.000 | 0.981 | 0.848 | 0.818 | 0.200 | ||
2 | Binary | 0.929 | 0.944 | 0.989 | 0.972 | 0.788 | 0.818 | 0.000 | ||
2 | None | 0.925 | 0.917 | 0.989 | 0.962 | 0.788 | 0.818 | 0.200 | ||
2 | Yeo–J. | 0.925 | 0.944 | 0.989 | 0.934 | 0.879 | 0.818 | 0.000 | ||
2 | Yeo–J. | 0.911 | 0.972 | 0.978 | 0.943 | 0.727 | 0.818 | 0.000 | ||
1 | Yeo–J. | 0.793 | 0.862 | 0.882 | 0.750 | 0.759 | 0.091 | 0.000 | ||
1 | None | 0.723 | 0.862 | 0.857 | 0.679 | 0.519 | 0.364 | 0.111 | ||
FFNN | 2 | Binary | 0.950 | 0.889 | 0.989 | 0.991 | 0.970 | 0.818 | 0.000 | |
2 | Yeo–J. | 0.936 | 0.917 | 0.989 | 0.953 | 0.939 | 0.818 | 0.000 | ||
2 | Binary | 0.925 | 0.889 | 1.000 | 0.981 | 0.758 | 0.818 | 0.000 | ||
2 | Yeo–J. | 0.911 | 0.917 | 0.978 | 0.953 | 0.758 | 0.818 | 0.000 | ||
2 | None | 0.907 | 0.889 | 0.967 | 0.934 | 0.848 | 0.818 | 0.000 | ||
2 | None | 0.903 | 0.917 | 0.966 | 0.953 | 0.727 | 0.818 | 0.000 | ||
1 | Yeo–J. | 0.814 | 0.879 | 0.897 | 0.798 | 0.750 | 0.364 | 0.000 | ||
1 | None | 0.795 | 0.862 | 0.882 | 0.762 | 0.722 | 0.364 | 0.111 | ||
RNN | 2 | Binary | 0.936 | 0.918 | 0.977 | 0.978 | 0.928 | 0.764 | 0.047 | |
2 | Yeo–J. | 0.922 | 0.928 | 0.974 | 0.936 | 0.736 | 0.764 | 0.067 | ||
2 | Binary | 0.915 | 0.931 | 0.956 | 0.966 | 0.775 | 0.730 | 0.027 | ||
2 | Yeo–J. | 0.911 | 0.934 | 0.966 | 0.941 | 0.892 | 0.709 | 0.020 | ||
2 | None | 0.900 | 0.930 | 0.928 | 0.930 | 0.741 | 0.603 | 0.033 | ||
2 | None | 0.893 | 0.903 | 0.949 | 0.924 | 0.744 | 0.600 | 0.027 | ||
1 | Yeo–J. | 0.786 | 0.828 | 0.816 | 0.744 | 0.784 | 0.239 | 0.174 | ||
1 | None | 0.748 | 0.855 | 0.831 | 0.762 | 0.678 | 0.076 | 0.096 |
Specificity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Data | Transf. | L. att. | Accuracy | Fiber | Fines | Ribbon | Stump | Shive | Other |
Lasso | 2 | Binary | 0.964 | 1.000 | 0.995 | 0.983 | 0.984 | 0.993 | 1.000 | |
2 | Yeo–J. | 0.936 | 0.996 | 0.974 | 0.983 | 0.980 | 0.985 | 1.000 | ||
2 | Binary | 0.932 | 0.996 | 0.963 | 0.983 | 0.984 | 0.993 | 0.993 | ||
2 | None | 0.925 | 0.996 | 0.974 | 0.983 | 0.972 | 0.989 | 0.993 | ||
2 | Yeo–J. | 0.907 | 0.992 | 0.953 | 0.977 | 0.976 | 0.985 | 0.996 | ||
2 | None | 0.904 | 0.992 | 0.948 | 0.977 | 0.972 | 0.989 | 0.996 | ||
1 | Yeo–J. | 0.765 | 0.966 | 0.889 | 0.946 | 0.893 | 0.994 | 0.991 | ||
1 | None | 0.708 | 0.986 | 0.841 | 0.936 | 0.847 | 0.994 | 0.989 | ||
SVM | 2 | Binary | 0.954 | 1.000 | 0.995 | 0.977 | 0.980 | 0.996 | 0.993 | |
2 | None | 0.943 | 0.992 | 0.979 | 0.989 | 0.980 | 0.989 | 1.000 | ||
2 | Binary | 0.929 | 0.996 | 0.963 | 0.983 | 0.976 | 0.989 | 1.000 | ||
2 | None | 0.925 | 0.992 | 0.974 | 0.983 | 0.968 | 0.989 | 1.000 | ||
2 | Yeo–J. | 0.925 | 0.992 | 0.969 | 0.983 | 0.972 | 0.993 | 0.996 | ||
2 | Yeo–J. | 0.911 | 0.992 | 0.953 | 0.971 | 0.968 | 0.996 | 1.000 | ||
1 | Yeo–J. | 0.793 | 0.959 | 0.922 | 0.951 | 0.901 | 0.996 | 0.994 | ||
1 | None | 0.723 | 0.964 | 0.852 | 0.943 | 0.871 | 0.996 | 0.989 | ||
FFNN | 2 | Binary | 0.950 | 1.000 | 0.995 | 0.977 | 0.984 | 0.985 | 0.996 | |
2 | Yeo–J. | 0.936 | 0.996 | 0.974 | 0.977 | 0.980 | 0.993 | 0.996 | ||
2 | Binary | 0.925 | 0.996 | 0.958 | 0.983 | 0.984 | 0.985 | 0.996 | ||
2 | Yeo–J. | 0.911 | 0.992 | 0.953 | 0.971 | 0.976 | 0.993 | 0.996 | ||
2 | None | 0.907 | 1.000 | 0.942 | 0.971 | 0.980 | 0.985 | 0.996 | ||
2 | None | 0.903 | 0.992 | 0.958 | 0.965 | 0.972 | 0.985 | 1.000 | ||
1 | Yeo–J. | 0.814 | 0.969 | 0.930 | 0.946 | 0.921 | 0.994 | 0.994 | ||
1 | None | 0.795 | 0.981 | 0.907 | 0.946 | 0.896 | 0.996 | 0.994 | ||
RNN | 2 | Binary | 0.936 | 0.989 | 0.994 | 0.985 | 0.983 | 0.985 | 0.991 | |
2 | Yeo–J. | 0.922 | 0.991 | 0.940 | 0.978 | 0.971 | 0.991 | 0.999 | ||
2 | Binary | 0.915 | 0.984 | 0.971 | 0.981 | 0.977 | 0.988 | 0.988 | ||
2 | Yeo–J. | 0.911 | 0.988 | 0.965 | 0.982 | 0.970 | 0.991 | 0.997 | ||
2 | None | 0.900 | 0.978 | 0.951 | 0.960 | 0.966 | 0.989 | 0.996 | ||
2 | None | 0.893 | 0.978 | 0.946 | 0.958 | 0.971 | 0.989 | 0.997 | ||
1 | Yeo–J. | 0.786 | 0.975 | 0.947 | 0.944 | 0.856 | 0.992 | 0.989 | ||
1 | None | 0.748 | 0.959 | 0.921 | 0.919 | 0.885 | 0.998 | 0.994 |
Dataset | Transform. | Light att. | Kernel | ||
---|---|---|---|---|---|
1 | None | linear | 10 | 0.01 | |
1 | Yeo–Johnson | RBF | 10 | 0.1 | |
2 | None | linear | 100 | 0.01 | |
2 | None | linear | 0.1 | 0.01 | |
2 | Yeo–Johnson | RBF | 100 | 0.01 | |
2 | Yeo–Johnson | linear | 1 | 0.01 | |
2 | Binary | linear | 100 | 0.01 | |
2 | Binary | linear | 10 | 0.01 |
Layer | Hidden Units | Activation Type |
---|---|---|
LSTM | 124 | ReLU |
GRU1 | 32 | Tanh |
GRU2 | 16 | Tanh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindström, S.B.; Amjad, R.; Gåhlin, E.; Andersson, L.; Kaarto, M.; Liubytska, K.; Persson, J.; Berg, J.-E.; Engberg, B.A.; Nilsson, F. Pulp Particle Classification Based on Optical Fiber Analysis and Machine Learning Techniques. Fibers 2024, 12, 2. https://doi.org/10.3390/fib12010002
Lindström SB, Amjad R, Gåhlin E, Andersson L, Kaarto M, Liubytska K, Persson J, Berg J-E, Engberg BA, Nilsson F. Pulp Particle Classification Based on Optical Fiber Analysis and Machine Learning Techniques. Fibers. 2024; 12(1):2. https://doi.org/10.3390/fib12010002
Chicago/Turabian StyleLindström, Stefan B., Rabab Amjad, Elin Gåhlin, Linn Andersson, Marcus Kaarto, Kateryna Liubytska, Johan Persson, Jan-Erik Berg, Birgitta A. Engberg, and Fritjof Nilsson. 2024. "Pulp Particle Classification Based on Optical Fiber Analysis and Machine Learning Techniques" Fibers 12, no. 1: 2. https://doi.org/10.3390/fib12010002
APA StyleLindström, S. B., Amjad, R., Gåhlin, E., Andersson, L., Kaarto, M., Liubytska, K., Persson, J., Berg, J. -E., Engberg, B. A., & Nilsson, F. (2024). Pulp Particle Classification Based on Optical Fiber Analysis and Machine Learning Techniques. Fibers, 12(1), 2. https://doi.org/10.3390/fib12010002