Influence of Stirrup Spacing on the Strengthening and Rehabilitating of RC T-beams Using Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Strips
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Materials
2.1.1. Concrete
2.1.2. Steel
2.1.3. NSM-CFRP
2.1.4. Epoxy Resin
2.2. Beams Geometry and Reinforcement Details
2.3. Details of Specimens
2.4. Construction of Beams
2.4.1. Concrete Casting and Curing
2.4.2. CFRP Installation
2.5. Test Setup
3. Theoretical Capacity According to the ACI 440.2R-17 [45]
4. Results and Discussion
4.1. General Behavior and Failure Modes
4.2. Experimental Load–Deflection Behavior
4.3. Experimental Ultimate Loads
4.4. Theoretical Results
5. Conclusions
- Regardless of the internal shear stirrup spacing, all beams exhibited pure shear failure in which the dominated failure mode was side concrete cover separation with shear cracks propagated behind the NSM-CFRP from near the supports up to the loading point. The flange collapsed in some beams; however, no NSM-CFRP de-bonding or rupture was noticed.
- The use of NSM-CFRP enhanced the shear capacities for all beams in the range of 40% to 95%. However, the enhancement in the strengthened beams was higher than that in the rehabilitated beams with the same NSM-CFRP scheme.
- The shear capacity increased with the decrease in the internal stirrup spacing and NSM-CFRP strip spacing.
- The ACI 440.2R-17 code was found to be conservative in predicting the theoretical shear capacity of the beams using NSM-CFRP inclined strips. However, the code does not distinguish between the strengthening and rehabilitating of beams.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Hsu, C.T. Shear Strengthening of Reinforced Concrete Beams Using Carbon-Fiber-Reinforced Polymer Laminates. J. Compos. Constr. 2005, 9, 158–169. [Google Scholar] [CrossRef]
- Dong, J.; Wang, Q.; Guan, Z. Structural Behavior of RC Beams with External Flexural and Flexural–Shear Strengthening by FRP Sheets. Compos. Part B 2013, 44, 604–612. [Google Scholar] [CrossRef]
- Hassan, S.K.H.; Abdel-Jaber, M.S.; Alqam, M. Rehabilitation of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymers (CFRP). Mod. Appl. Sci. 2018, 12, 179–194. [Google Scholar] [CrossRef]
- Abed, D.J.; Abdel- Jaber, M.S.; Shatarat, N.K. Behavior of Square Reinforced- Concrete Columns Strengthened with Carbon Fiber Reinforced Polymers (Cfrp) Under Eccentric Loading. Int. J. Civ. Eng. Technol. 2018, 9, 532–547. [Google Scholar]
- Al-Zu’Bi, H.; Abdel-Jaber, M.; Katkhuda, H. Flexural Strengthening of Reinforced Concrete Beams with Variable Compressive Strength Using Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Strips [NSM-CFRP]. Fibers 2022, 10, 86. [Google Scholar] [CrossRef]
- Abdel Hafez, A.M. Shear Behavior of RC Beams Strengthened Externally with Bonded CFRP–U Strips. J. Eng. Sci. 2007, 35, 361–379. [Google Scholar] [CrossRef]
- Abdel-Jaber, M.S.; Walker, P.R.; Hutchinson, A.R. Shear Strengthening of Reinforced Concrete Beams Using Different Configurations of Externally Bonded Carbon Fibre Reinforced Plates. Mater. Struct. 2003, 36, 291–301. [Google Scholar] [CrossRef]
- Abdel-Jaber, M. Shear Strengthening of Reinforced Concrete Beams Using Externally Bonded Carbon Fibre Reinforced Plates. Ph.D. Thesis, Oxford Brookes University, Oxford, UK, 2001. [Google Scholar]
- Abdel-Jaber, M.; Shatanawi, A.S.; Abdel-Jaber, M.S. Guidelines for Shear Strengthening of Beams Using Carbon Fiber-Reinforced Polymer (FRP) Plates. Jordan J. Civ. Eng. 2007, 1, 327–335. [Google Scholar]
- Adhikary, B.B.; Mutsuyoshi, H. Shear Strengthening of Reinforced Concrete Beams Using Various Techniques. Constr. Build. Mater. 2006, 20, 366–373. [Google Scholar] [CrossRef]
- Al-Ghanim HAl-Asi AAbdel-Jaber, M.; Alqam, M. Shear and Flexural Behavior of Reinforced Concrete Deep Beams Strengthened with CFRP Composites. Mod. Appl. Sci. 2017, 10, 110–122. [Google Scholar]
- Alsayed, S.H.; Siddiqui, N.A. Reliability of Shear-Deficient RC Beams Strengthened with CFRP-Strips. Constr. Build. Mater. 2013, 42, 238–247. [Google Scholar] [CrossRef]
- Alsayed, S.H. Effect of Fiber Parameters and Concrete Strength on Shear Behavior of Strengthened RC Beams. Constr. Build. Mater. 2013, 44, 15–24. [Google Scholar]
- Barros, J.A.; Dias, S.J.; Lima, J.L. Efficacy of CFRP-based Techniques for the Flexural and Shear Strengthening of Concrete Beams. Cem. Concr. Compos. 2007, 29, 203–217. [Google Scholar]
- Bousselham, A.; Chaallal, O. Shear Strengthening Reinforced Concrete Beams with Fiber-Reinforced Polymer: Assessment of Influencing Parameters and Required Research. ACI Struct. J. 2004, 101, 219–227. [Google Scholar]
- Bukhari, I.; Vollum, R.; Ahmad, S.; Sagaseta, J. Shear Strengthening of Reinforced Concrete beams with CFRP. Mag. Concr. Res. 2010, 62, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Chajes, M.J.; Januska, T.F.; Mertz, D.R.; Thomson, T.A.; Finch, W.W. Shear Strengthening of Reinforced Concrete Beams Using Externally Applied Composite Fabrics. ACI Struct. J. 1995, 92, 295–303. [Google Scholar]
- Chen, J.F.; Tengb, J.G. Shear Capacity of FRP-Strengthened RC Beams: FRP Debonding. Constr. Build. Mater. 2003, 17, 27–41. [Google Scholar] [CrossRef]
- Godat, A.; Qu, Z.; Lu, Z.X.; Labossiere, P.; Ye, L.P.; Neale, K.W. Size Effects for Reinforced Concrete Beams Strengthened in Shear with CFRP Strips. J. Compos. Constr. 2010, 14, 260–271. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Mansor, A.A.; Hameed, M. Structural Behavior of Strengthened RC Beams in Shear using CFRP Strips. Open Civ. Eng. J. 2017, 11, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Mhanna, H.H.; Hawilehb, R.A.; Abdallac, J.A. Shear Strengthening of Reinforced Concrete Beams Using CFRP Wraps. Procedia Struct. Integr. 2019, 17, 214–221. [Google Scholar] [CrossRef]
- Mostofinejad, D.; Hosseini, S.A.; Razavi, S.B. Influence of Different Bonding and Wrapping Techniques on Performance of Beams Strengthened in Shear Using CFRP Reinforcement. Constr. Build. Mater. 2016, 116, 310–320. [Google Scholar] [CrossRef]
- Teng, J.G.; Smith, S.T.; Yao, J.; Chen, J.F. Intermediate Crack-induced De-bonding in RC Beams and Slabs. Constr. Build. Mater. 2003, 17, 447–462. [Google Scholar] [CrossRef]
- Triantafillou, T. Shear Strengthening of Reinforced Concrete Beams Using Epoxy-Bonded FRP Composites. ACI Struct. J. 1998, 95, 107–115. [Google Scholar]
- Imran MShafiq, N.; Akbar, I. Strengthening Techniques & Failure Modes of RC Beam Strengthened Using Fibre Reinforced Polymer. A Review. GSTF J. Eng. Technol. 2013, 2, 93–98. [Google Scholar]
- Bae, W.; Belarbi, A.; Brancaccio, A. Shear strengthening of full-scale RC T-Beams using externally bonded CFRP sheets. In Proceedings of the First Middle East Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Dubai, United Arab Emirates, 8–10 February 2011. [Google Scholar]
- Kim, Y.; Quinn, K.; Ghannoum, W.M.; Jirsa, J.O. Strengthening of Reinforced Concrete T-Beams Using Anchored CFRP Materials. ACI Struct. J. 2012, 111, 1027. [Google Scholar] [CrossRef]
- Soliman, J. General behavior of T–section RC beams strengthened with epoxy–bonded carbon strands. MOJ Civil Eng. 2018, 4, 213–217. [Google Scholar] [CrossRef]
- El-Saikaly, G.; Godat, A.; Chaall, O. New Anchorage Technique for FRP Shear-Strengthened RC T-Beams Using CFRP Rope. J. Compos. Constr. 2015, 19, 04014064. [Google Scholar] [CrossRef]
- Tanarslan, H.M.; Altin, S. Behavior of RC T-section beams strengthened with CFRP strips, subjected to cyclic load. Mater. Struct. 2009, 43, 529–542. [Google Scholar] [CrossRef]
- Khalifa, A.; Nanni, A. Improving shear capacity of existing RC T-section beams using CFRP composites. Cem. Concr. Compos. 2000, 22, 165–174. [Google Scholar] [CrossRef]
- Jayaprakash, J.; Samad, A.A.; Ashrabov, A.A.; Chong, K.K. Experimental Investigation on Shear Resistance Behaviour of RC Precracked and Non Precracked T-Beams using Discrete CFRP Strips. Int. J. Integr. Eng. 2009, 1, 1–5. [Google Scholar]
- Williams, B.; Kodur, V.; Green, M.F.; Bisby, L. Fire Endurance of Fiber-Reinforced Polymer Strengthened Concrete T-Beams. ACI Struct. J. 2009, 105, 60–67. [Google Scholar]
- Rosa, I.C.; Firmo, J.P.; Correia, J.R.; Mazzuca, P. Influence of elevated temperatures on the bond behaviour of GFRP bars to concrete—Pull-out tests. In Proceedings of the IABSE Symposium 2019 Guimarães: Towards a Resilient Built Environment—Risk and Asset Management, Guimarães, Portugal, 27–29 March 2019. [Google Scholar]
- Darain, K.M.; Jumaat, M.Z.; Shukri, A.A.; Obaydullah, M.; Huda, M.N.; Hosen, M.A.; Hoque, N. Strengthening of RC Beams Using Externally Bonded Reinforcement Combined with Near-Surface Mounted Technique. Polymers 2016, 8, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lorenzis, L.; Teng, J.G. Near-Surface Mounted FRP Reinforcement: An emerging technique for strengthening structures. Compos. Part B 2007, 38, 119–143. [Google Scholar] [CrossRef]
- Rizzo, A.; De Lorenzis, L. Behavior and capacity of RC beams strengthened in shear with NSM FRP reinforcement. Constr. Build. Mater. 2009, 23, 1555–1567. [Google Scholar] [CrossRef]
- Sena-Cruz, J.M.; Barros, J.A.O. Bond between near-surface mounted CFRP laminate strips and concrete. J. Compos. Constr. ASCE 2004, 8, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Dias, S.; Barros, J. Performance of reinforced concrete T beams strengthened in shear with NSM CFRP laminates. Eng. Struct. 2010, 32, 373–384. [Google Scholar] [CrossRef]
- Al Rjoub, Y.S.; Ashteyat, A.M.; Obaidat, Y.T.; Bani-Youniss, S. Shear strengthening of RC beams using near-surface mountedcarbon fibre-reinforced polymers. Aust. J. Struct. Eng. 2019, 20, 54–62. [Google Scholar] [CrossRef]
- Saadah, M.; Ashteyat, A.; Murad, Y. Shear strengthening of RC beams using side near surface mounted CFRP ropes and strips. Structures 2021, 32, 380–390. [Google Scholar] [CrossRef]
- Abdel-Jaber, M.; Abdel-Jaber, M.; Katkhuda, H.; Shatarat, N.; El-Nimri, R. Influence of Compressive Strength of Concrete on Shear Strengthening of Reinforced Concrete Beams with Near Surface Mounted Carbon Fiber-Reinforced Polymer. Buildings 2021, 11, 563. [Google Scholar] [CrossRef]
- Ebead, U.; Wakjira, T.G. Behaviour of RC beams strengthened in shear using near surface embedded FRCM. IOP Conf. Ser. Mater. Sci. Eng. 2018, 431, 072001. [Google Scholar] [CrossRef]
- Bencardino, F.; Nisticò, M. A Theoretical Model for Debonding Prediction in the RC Beams Externally Strengthened with Steel Strip and Inorganic Matrix. Materials 2021, 14, 4961. [Google Scholar] [CrossRef] [PubMed]
- Bakis, C.E.; Ganjehlou, A.; Kachlakev, D.I.; Schupack, M.; Balaguru, P.; Gee, D.J.; Karbhari, V.M.; Scott, D.W.; Ballinger, C.A.; Gentry, T.R.; et al. ACI 440.2R-17: Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures; ACI Committee: Farmington Hills, MI, USA, 2017. [Google Scholar]
- American Concrete Institute. Building Code Requirements for Reinforced Concrete and Commentary; ACI 318: 318M–19; American Concrete Institute: Indianapolis, IN, USA, 2019; p. 261. [Google Scholar]
Density | 1.60 g/cm3 |
---|---|
Fiber Volume Content | >68% |
Modulus of Elasticity | 165,000 N/mm2 |
Tensile Strength | 3100 N/mm2 |
Strain at break | >1.70% |
Density | 1.30 kg/lt ± 0.1 kg/lt (Part A + B Mixed) |
---|---|
Thermal Expansion Coefficient | 4.5 × 10−5 per °C |
Modulus of Elasticity | 3800 N/mm2 4500 N/mm2 |
Tensile Strength | 30 N/mm2 |
Elongation at break | 0.9% |
Sample | Internal Shear Stirrup Spacing (mm) | Strengthening/Rehabilitation | NSM-CFRP Inclination | NSM-CFRP Spacing (mm) | |
---|---|---|---|---|---|
Group A | A-C | Φ10@50 | - | - | - |
A-R75 | Φ10@50 | R | 45° | 75 | |
A-S75 | Φ10@50 | S | 45° | 75 | |
A-S150 | Φ10@50 | S | 45° | 150 | |
Group B | B-C | Φ10@150 | - | - | - |
B-R75 | Φ10@150 | R | 45° | 75 | |
B-R150 | Φ10@150 | R | 45° | 150 | |
B-S75 | Φ10@150 | S | 45° | 75 |
Sample | Experimental Load (kN) | Percent Increase (%) | |
---|---|---|---|
Group A | A-C | 320.0 | - |
A-R75 | 576.1 | 80% | |
A-S75 | 624.0 | 95% | |
A-S150 | 553.8 | 73% | |
Group B | B-C | 220.0 | - |
B-R75 | 348.1 | 58% | |
B-R150 | 308.8 | 40% | |
B-S75 | 375.2 | 71% |
Sample | Experimental Shear Load (kN) | Theoretical Load (kN) | Percent Increase (%) | |
---|---|---|---|---|
Group A | A-C | 160.0 | 157.6 | 1.5 |
A-R75 | 288.0 | 186.3 | 35.3 | |
A-S75 | 312.0 | 186.3 | 40.3 | |
A-S150 | 276.9 | 172.0 | 37.9 | |
Group B | B-C | 110.0 | 105.5 | 4.0 |
B-R75 | 174.0 | 134.2 | 22.9 | |
B-R150 | 154.4 | 119.9 | 22.3 | |
B-S75 | 187.6 | 134.2 | 28.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Jaber, M.; Abdel-Jaber, M.; Katkhuda, H.; Shatarat, N.; Sulaiman, A.; El-Nimri, R. Influence of Stirrup Spacing on the Strengthening and Rehabilitating of RC T-beams Using Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Strips. Fibers 2022, 10, 103. https://doi.org/10.3390/fib10120103
Abdel-Jaber M, Abdel-Jaber M, Katkhuda H, Shatarat N, Sulaiman A, El-Nimri R. Influence of Stirrup Spacing on the Strengthening and Rehabilitating of RC T-beams Using Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Strips. Fibers. 2022; 10(12):103. https://doi.org/10.3390/fib10120103
Chicago/Turabian StyleAbdel-Jaber, Ma’en, Mu’tasim Abdel-Jaber, Hasan Katkhuda, Nasim Shatarat, Alaa Sulaiman, and Rola El-Nimri. 2022. "Influence of Stirrup Spacing on the Strengthening and Rehabilitating of RC T-beams Using Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Strips" Fibers 10, no. 12: 103. https://doi.org/10.3390/fib10120103
APA StyleAbdel-Jaber, M., Abdel-Jaber, M., Katkhuda, H., Shatarat, N., Sulaiman, A., & El-Nimri, R. (2022). Influence of Stirrup Spacing on the Strengthening and Rehabilitating of RC T-beams Using Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Strips. Fibers, 10(12), 103. https://doi.org/10.3390/fib10120103