Tri-Functional Calcium-Deficient Calcium Titanate Coating on Titanium Metal by Chemical and Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Treatment
2.2. Surface Analysis
2.2.1. Scanning Electron Microscopy and Energy Dispersive X-ray Analysis
2.2.2. Thin-Film X-ray Diffraction and Fourier Transform Confocal Laser Raman Spectrometry
2.2.3. Scratch Resistance
2.2.4. X-ray Photoelectron Spectroscopy
2.3. Ion Release
2.4. Soaking in Simulated Body Fluid (SBF)
2.5. Antibacterial Activity Test
2.6. Cell Proliferation
2.7. Statistical Analysis
3. Results
3.1. Effect of the pH of the Solution Used on Apatite Formation
3.2. Effect of the Ag Concentration in the Solution Treatment on Apatite Formation
3.3. Effect of the Ag Concentration in the Solution on Cytotoxicity
3.4. Antibacterial Activity
3.5. Ion Release Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hacking, S.A.; Tanzer, M.; Harvey, E.J.; Krygier, J.J.; Bobyn, J.D. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings. Clin. Orthopaed. Relat. Res. 2002, 405, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.G.; Granjeiro, J.M.; Romanos, G.E.; Suzuki, M.; Silva, N.R.F.; Cardaropoli, G.; Thompson, V.P.; Lemons, J.E. Basic research methods and current trends of dental implant surfaces. J. Biomed. Mater. Res. 2009, 88, 579–596. [Google Scholar] [CrossRef] [PubMed]
- Brammera, K.S.; Ohd, S.; Cobba, C.J.; Bjurstenb, L.M.; van der Heydec, H.; Jina, S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009, 5, 3215–3223. [Google Scholar] [CrossRef]
- Zhao, L.; Mei, S.; Chu, P.K.; Zhang, Y.; Wu, Z. The influence of hierarchical hybrid micro/nano-textured titanium surface wih titania nanotubes on osteoblast functions. Biomaterials 2010, 31, 5072–5082. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T. Bioceramics and Their Clinical Applications; Woodhead Publishing: Cambridge, UK, 2008. [Google Scholar]
- Kawai, T.; Takemoto, M.; Fujibayashi, S.; Tanaka, M.; Akiyama, H.; Nakamura, T.; Matsuda, S. Comparison between alkali heat treatment and sprayed hsydroxyapatite coating on thermally-sprayed rough Ti surface in rabbit model: Effects on bone-bonding ability and osteoconductivity. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 1069–1081. [Google Scholar] [CrossRef]
- Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Jansen, J.A.; de Groot, K. Bioceramics and Their Clinical Applications; Kokubo, T., Ed.; Woodhead Publishing: Cambridge, UK, 2008; Chapter 20; pp. 464–484. [Google Scholar]
- Strange, D.G.T.; Oyen, M.L. Biomimetic bone-like composites fabricated through an automated alternate soaking process. Acta Biomater. 2011, 7, 3586–3594. [Google Scholar] [CrossRef] [PubMed]
- Nayab, S.N.; Jones, F.H.; Olsen, I. Modulation of the human bone cell cycle by calcium ion-implantation of titanium. Biomaterials 2007, 28, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, Y.; Niinomi, M.; Nakai, M.; Tsutsumi, H.; Doi, H.; Nomura, N.; Hanawa, T. Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti–29Nb–13Ta–4.6Zr alloy. Appl. Surf. Sci. 2012, 262, 34–38. [Google Scholar] [CrossRef]
- Park, J.W.; Park, K.B.; Suh, J.Y. Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae. Biomaterials 2007, 28, 3306–3313. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kim, Y.J.; Jang, J.H.; Kwon, T.G.; Bae, Y.C.; Suh, J.Y. Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces. Acta Biomater. 2010, 6, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, M.; Fujibayashi, S.; Neo, M.; Suzuki, J.; Matsushita, T.; Kokubo, T.; Nakamura, T. Osteoinductive porous titanium implants: Effect of sodium removal by dilute HCl treatment. Biomaterials 2006, 27, 2682–2691. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Takemoto, M.; Fujibayashi, S.; Akiyama, H.; Yamaguchi, S.; Pattanayak, D.K.; Doi, K.; Matsushita, T.; Nakamura, T.; Kokubo, T.; et al. Osteoconduction of porous Ti metal enhanced by acid and heat treatments. J. Mater. Sci. Mater. Med. 2013, 24, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Miyaji, F.; Kim, H.M.; Nakamura, T. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J. Am. Ceram. Soc. 1996, 79, 1127–1129. [Google Scholar] [CrossRef]
- Kokubo, T.; Yamaguchi, S. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys. Acta Biomater. 2016, 44, 16–30. [Google Scholar] [CrossRef] [PubMed]
- So, K.; Kaneuji, A.; Matsumoto, T.; Matsuda, S.; Akiyama, H. Is the bone-bonding ability of a cementless total hip prosthesis enhanced by alkaline and heat treatments? Clin. Orthop. Relat. Res. 2013, 471, 3847–3855. [Google Scholar] [CrossRef] [PubMed]
- Kizuki, T.; Matsushita, T.; Kokubo, T. Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater. 2010, 6, 2836–2842. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Takadama, H.; Matsushita, T.; Nakamura, T.; Kokubo, T. Apatite-forming ability of Ti–15Zr–4Nb–4Ta alloy induced by calcium solution treatment. J. Mater. Sci. Mater. Med. 2010, 21, 439–444. [Google Scholar] [CrossRef]
- Fukuda, A.; Takemoto, M.; Saito, T.; Fujibayashi, S.; Neo, M.; Yamaguchi, S.; Kizuki, T.; Matsushita, T.; Niinomi, M.; Kokubo, T.; et al. Bone bonding bioactivity of Ti metal and Ti–Zr–Nb–Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater. 2011, 7, 1379–1386. [Google Scholar] [CrossRef]
- Hamilton, H.; Jamieson, J. Deep infection in total hip arthroplasty. Can. J. Surg. 2008, 51, 111–117. [Google Scholar]
- O’Neill, E.; Awale, G.; Daneshmandi, L.; Umerah, O.; Lo, K.W. The roles of ions on bone regeneration. Drug Discov. Today 2018, 23, 879–890. [Google Scholar] [CrossRef]
- Barbara, A.; Delannoy, P.; Denis, B.G.; Marie, P.J. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 2004, 53, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Bonnelye, E.; Chabadel, A.; Saltel, F.; Jurdic, P. Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 2008, 42, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. Antibacterial activity and mechanism of action of the silver ion in staphylococcus aureus and Escherichia Coli. Appl. Envrion. Microbiol. 2008, 74, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Klasen, H.J. Historical review of the use of silver in the treatment of burns. Burns 2000, 26, 117–130. [Google Scholar] [CrossRef]
- Ferraris, S.; Venturello, A.; Miola, M.; Cochis, A.; Rimondini, L.; Spriano, S. Antibacterial and bioactive nanostructured titanium surfaces for bone integration. Appl. Surf. Sci. 2014, 311, 279–291. [Google Scholar] [CrossRef]
- Kizuki, T.; Matsushita, T.; Kokubo, T. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys. J. Mater. Sci. Mater. Med. 2014, 25, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Nath, S.; Matsushita, T.; Kokubo, T. Controlled release of strontium ions from a bioactive Ti metal with a Ca-enriched surface layer. Acta Biomater. 2014, 10, 2282–2289. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kim, Y.J.; Jang, J.H.; Suh, J.Y. Surface characteristics and primary bone marrow stromal cell response of a nanostructured strontium-containing oxide layer produced on a microrough titanium surface. J. Biomed. Mater. Res. A 2012, 100, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Chernozema, R.V.; Surmeneva, M.A.; Krauseb, B.; Baumbach, T.; Ignatov, V.P.; Prymak, O.; Loza, K.; Epple, M.; Ennen-Roth, F.; Wittmar, A.; et al. Functionalization of titania nanotubes with electrophoretically deposited silver and calcium phosphate nanoparticles: Structure, composition and antibacterial assay. Mater. Sci. Eng. C 2019, 97, 420–430. [Google Scholar] [CrossRef]
- Surmeneva, M.A.; Sharonova, A.A.; Chernousova, S.; Prymak, O.; Loza, K.; Tkachev, M.S.; Shulepov, I.A.; Epple, M.; Surmenev, M.A. Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating. Colloids Surf. B Biointerfaces 2017, 156, 104–113. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- ISO22196:2011 Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces; ISO: Geneva, Switzerland, 2011.
- Kolwn’ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Frantti, J.; Lebedev, O.I.; Churagulov, B.R.; Tendeloo, G.V.; Yoshimura, M. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J. Phys. Chem. B 2006, 110, 4030–4038. [Google Scholar] [CrossRef]
- NIST X-ray Photoelectron Spectroscopy Database, version 4.1; NIST: Gaithersburg, MA, USA, 2012.
- Powder Diffraction Data File 00-004-0783. Joint Committee on Powder Diffraction Standards (JCPDS); International Centre for Diffraction Data: Newtown Square, PA USA, 2015.
- Kokubo, T.; Yamaguchi, S. Novel bioactive titanate layers formed on Ti metal and its alloy by chemical treatments. Materials 2010, 3, 48–63. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Matsushita, T.; Nakamura, T.; Kokubo, T. Bioactive Ti metal with Ca-enriched surface layer able to release Zn ion. Key Eng. Mater. 2013, 529, 547–552. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Nath, S.; Sugawara, Y.; Divakarla, K.; Das, T.; Manos, J.; Chrzanowski, W.; Matsushita, T.; Kokubo, T. Two-in-one biointerfaces—Antimicrobial and bioactive nanoporous gallium titanate layers for titanium implants. Nanomaterials 2017, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Matsushita, T.; Kokubo, T. A bioactive Ti metal with a Ca enriched surface layer releases Mg ions. RSC Adv. 2013, 3, 11274–11282. [Google Scholar] [CrossRef]
- Song, X.; Tang, W.; Gregurec, D.; Yate, L.; Moya, S.E.; Wang, G. Layered titanates with fibrous nanotopographic features as reservoir for bioactive ions to enhance osteogenesis. Appl. Surf. Sci. 2018, 436, 653–661. [Google Scholar] [CrossRef]
- Inoue, Y.; Uota, M.; Torikai, T.; Watari, T.; Noda, I.; Hotokebuchi, T.; Yada, M. Antibacterial properties of nanostructured silver titanate thin films formed on a titanium plate. J. Biomed. Mater. Res. 2010, 92, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Prabu, V.; Karthick, P.; Rajendran, A.; Natarajan, D.; Kiran, M.S.; Pattanayak, D.K. Bioactive Ti alloy with hydrophilicity, antibacterial activity and cytocompatibility. RSC Adv. 2015, 5, 50767–50777. [Google Scholar] [CrossRef]
- Okuzu, Y.; Fujibayashi, S.; Yamaguchi, S.; Yamamoto, K.; Shimizu, T.; Sono, T.; Goto, T.; Ohtsuki, B.; Matsushita, T.; Kokubo, T.; et al. Strontium and magnesium ions released from bioactive titanium metal promote early bone bonding in a rabbit implant model. Acta Biomater. 2017, 63, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spriano, S.; Yamaguchi, S.; Baino, F.; Ferraris, S. A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomaterialia 2018, 79, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Fujibayashi, S.; Neo, M.; Kim, H.-M.; Kokubo, T.; Nakamura, T. A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O-CaO-SiO2 glasses. Biomaterials 2003, 24, 1349–1356. [Google Scholar] [CrossRef]
- Takemoto, M.; Nakamura, T. Bioceramics and Their Clinical Applications; Kokubo, T., Ed.; Woodhead Publishing: Cambridge, UK, 2008; Chapter 8; pp. 183–198. [Google Scholar]
- Sila-Asna, M.; Bunyaratvej, A.; Maeda, S.; Kitaguchi, H.; Bunyaratavej, N. Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J. Med. Sci. 2007, 53, 25–35. [Google Scholar] [PubMed]
Nominal pH | Measured pH | Additive |
---|---|---|
pH = 3 | 3.06 | HNO3 |
pH = 4 | 3.90 | HNO3 |
pH = 5 | 4.80 | No additives |
pH = 6 | 6.01 | NH3(aq) |
pH = 7 | 7.16 | NH3(aq) |
pH = 8 | 7.83 | NH3(aq) |
Treatment | Element/at.% | |||||
---|---|---|---|---|---|---|
O | Ti | Na | Ca | Sr | Ag | |
NaOH | 65.1 | 29.8 | 5.1 | 0 | 0 | 0 |
NaOH-Ca + Sr | 68.1 | 28.4 | 0 | 2.2 | 1.3 | 0 |
NaOH-Ca + Sr-heat | 68.9 | 27.6 | 0 | 2.3 | 1.3 | 0 |
NaOH-Ca + Sr-heat-Sr + 1 mM Ag (pH = 3) | 66.8 | 29.8 | 0 | 1.8 | 1.4 | 0.2 |
NaOH-Ca + Sr-heat-Sr + 1 mM Ag (pH = 4) | 65.8 | 30.5 | 0 | 1.9 | 1.6 | 0.2 |
NaOH-Ca + Sr-heat-Sr + 1 mM Ag (pH = 5) | 66.1 | 30.0 | 0 | 2.2 | 1.6 | 0.2 |
NaOH-Ca + Sr-heat-Sr + 1 mM Ag (pH = 6) | 66.3 | 29.8 | 0 | 2.1 | 1.6 | 0.2 |
NaOH-Ca + Sr-heat-Sr + 1 mM Ag (pH = 7) | 65.6 | 30.6 | 0 | 2.1 | 1.6 | 0.1 |
NaOH-Ca + Sr-heat-Sr+1 mM Ag (pH = 8) | 65.7 | 30.4 | 0 | 2.1 | 1.7 | 0.1 |
NaOH-Ca + Sr-heat-Sr | 68.7 | 27.4 | 0 | 2.2 | 1.7 | 0 |
Treatment | Element/at.% | ||||
---|---|---|---|---|---|
O | Ti | Ca | Sr | Ag | |
NaOH-Ca + Sr-heat-Sr + 1 mM Ag (pH = 4) | 65.8 | 30.5 | 1.9 | 1.6 | 0.2 |
NaOH-Ca + Sr-heat-Sr + 2 mM Ag (pH = 4) | 66.1 | 30.3 | 1.9 | 1.5 | 0.2 |
NaOH-Ca + Sr-heat-Sr + 5 mM Ag (pH = 4) | 66.1 | 30.3 | 1.9 | 1.5 | 0.3 |
NaOH-Ca + Sr-heat-Sr + 10 mM Ag (pH = 4) | 66.3 | 30.2 | 1.8 | 1.4 | 0.3 |
NaOH-Ca + Sr-heat-Sr + 20 mM Ag (pH = 4) | 66.1 | 30.2 | 1.9 | 1.4 | 0.4 |
NaOH-Ca + Sr-heat-Sr + 50 mM Ag (pH = 4) | 66.1 | 29.6 | 2.0 | 1.5 | 0.9 |
NaOH-Ca + Sr-heat-Sr + 100 mM Ag (pH = 4) | 65.7 | 29.9 | 2.0 | 1.3 | 1.1 |
Treatment | Average of E. Coli count/CFU | Antibacterial Activity Value | |
---|---|---|---|
After Inoculation | After Incubation | ||
Untreated | 2.8 × 106 | 1.5 × 107 | – |
NaOH-Ca + Sr-heat-Sr + 1 mM Ag (pH = 4) | 4.7 × 106 | <20 | 5.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, S.; Thi Minh Le, P.; Ito, M.; Shintani, S.A.; Takadama, H. Tri-Functional Calcium-Deficient Calcium Titanate Coating on Titanium Metal by Chemical and Heat Treatment. Coatings 2019, 9, 561. https://doi.org/10.3390/coatings9090561
Yamaguchi S, Thi Minh Le P, Ito M, Shintani SA, Takadama H. Tri-Functional Calcium-Deficient Calcium Titanate Coating on Titanium Metal by Chemical and Heat Treatment. Coatings. 2019; 9(9):561. https://doi.org/10.3390/coatings9090561
Chicago/Turabian StyleYamaguchi, Seiji, Phuc Thi Minh Le, Morihiro Ito, Seine A. Shintani, and Hiroaki Takadama. 2019. "Tri-Functional Calcium-Deficient Calcium Titanate Coating on Titanium Metal by Chemical and Heat Treatment" Coatings 9, no. 9: 561. https://doi.org/10.3390/coatings9090561
APA StyleYamaguchi, S., Thi Minh Le, P., Ito, M., Shintani, S. A., & Takadama, H. (2019). Tri-Functional Calcium-Deficient Calcium Titanate Coating on Titanium Metal by Chemical and Heat Treatment. Coatings, 9(9), 561. https://doi.org/10.3390/coatings9090561