Glycerol-Plasticized Films Obtained from Whey Proteins Denatured at Alkaline pH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. Zeta-Potential and Particle Size Measurements
2.4. Film Mechanical Properties
2.5. Film Transmittance and Transparency
2.6. Film Moisture Content and Uptake
2.7. Statistical Analysis
3. Results and Discussion
3.1. Zeta-Potential and Particle Size
3.2. Film Mechanical Properties
3.3. Film Transparency
3.4. Film Moisture Content and Moisture Uptake
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yadav, J.S.S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R.; Surampalli, R. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 2015, 33, 756–774. [Google Scholar] [CrossRef] [PubMed]
- Donato, L.; Schmitt, C.; Bovetto, L.; Rouvet, M. Mechanism of formation of stable heat-induced β-lactoglobulin microgels. Int. Dairy J. 2009, 19, 295–306. [Google Scholar] [CrossRef]
- Bryant, C.; McClements, D. Optimizing preparation conditions for heat-denatured whey protein solutions to be used as cold-gelling ingredients. J. Food Sci. 2000, 65, 259–263. [Google Scholar] [CrossRef]
- Madureira, A.R.; Pereira, C.I.; Gomes, A.M.; Pintado, M.E.; Malcata, F.X.; Gomes, A.M.; Pintado, M.M. Bovine whey proteins–Overview on their main biological properties. Food Res. Int. 2007, 40, 1197–1211. [Google Scholar] [CrossRef]
- Chobert, J.-M. Milk protein modification to improve functional and biological properties. In Advances in Food and Nutrition Research, 1st ed.; Taylor, S.L., Ed.; Elsevier Inc.: San Diego, CA, USA, 2003; Volume 47, pp. 1–73. [Google Scholar]
- Di Pierro, P.; Mariniello, L.; Giosafatto, V.L.; Esposito, M.; Sabbah, M.; Porta, R. Dairy whey protein-based edible films and coatings for food preservation. In Food Packaging and Preservation, 1st ed.; Grumezescu, A., Holban, A.M., Eds.; Elsevier-Academic Press: New York, NY, USA, 2017; Volume 9, pp. 439–456. [Google Scholar]
- Janjarasskul, T.; Krochta, J.M. Edible packaging materials. Annu. Rev. Food Sci. Technol. 2010, 1, 415–448. [Google Scholar] [CrossRef]
- Valdés, A.; Burgos, N.; Jiménez, A.; Garrigós, M. Natural pectin polysaccharides as edible coatings. Coatings 2015, 5, 865–886. [Google Scholar] [CrossRef]
- Fernando, A.L.; Duarte, M.P.; Vatsanidou, A.; Alexopoulou, E. Environmental aspects of fiber crops cultivation and use. Ind. Crop. Prod. 2015, 68, 105–115. [Google Scholar] [CrossRef]
- Khwaldia, K.; Pérez, C.; Banon, S.; Desobry, S.; Hardy, J. Milk proteins for edible films and coatings. Crit. Rev. Food Sci. Nutr. 2004, 44, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Hammann, F.; Schmid, M.; Drelich, J.W. Determination quantification of molecular interactions in protein films: A review. Materials 2014, 7, 7975–7996. [Google Scholar] [CrossRef] [PubMed]
- Coltelli, M.B.; Wild, F.; Bugnicourt, E.; Cinelli, P.; Lindner, M.; Schmid, M.; Weckel, V.; Müller, K.; Rodriguez, P.; Staebler, A.; et al. State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: An extensive review. Coatings 2016, 6, 1. [Google Scholar] [CrossRef]
- Zink, J.; Wyrobnik, T.; Prinz, T.; Schmid, M.; Taubert, A.; Qin, Q. Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review. Int. J. Mol. Sci. 2016, 17, 1376. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Eng. Rev. 2019, 1–15. [Google Scholar] [CrossRef]
- Henriques, M.; Gomes, D.; Pereira, C. Whey protein edible coatings: Recent developments and applications. In Emerging and Traditional Technologies for Safe, Healthy and Quality Food, 1st ed.; Nedovic, V., Raspor, P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 176–196. [Google Scholar]
- Alvarez-Pérez, O.B.; Rodríguez-Herrera, R.; Rodríguez-Jasso, R.M.; Rojas, R.; Aguilar-González, M.A.; Aguilar, C.N. Whey protein-based edible films: Progress and prospects. In Applied Chemistry and Chemical Engineering, 1st ed.; Haghi, A.K., Faria Ribeiro, A.C., Eds.; Apple Academic Press: New York, NY, USA, 2017; Volume 5, pp. 161–182. [Google Scholar]
- Di Pierro, P.; Sorrentino, A.; Mariniello, L.; Giosafatto, C.V.L.; Porta, R.; Giosafatto, C.V.L. Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT-Food Sci. Technol. 2011, 44, 2324–2327. [Google Scholar] [CrossRef]
- Schmid, M.; Dallmann, K.; Bugnicourt, E.; Cordoni, D.; Wild, F.; Lazzeri, A.; Noller, K. Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Int. J. Polym. Sci. 2012, 2012, 562381. [Google Scholar] [CrossRef]
- Irurzun, I.; Bou, J.J.; Pérez-Camero, G.; Abad, C.; Campos, A.; Muñoz-Guerra, S.; Pérez-Camero, G.; Muñoz-Guerra, S. Mark-houwink parameters of biosynthetic poly(γ-glutamic acid) in aqueous solution. Macromol. Chem. Phys. 2001, 202, 3253–3256. [Google Scholar] [CrossRef]
- Porta, R.; Di Pierro, P.; Roviello, V.; Sabbah, M. Tuning the functional properties of bitter vetch (vicia ervilia) protein films grafted with spermidine. Int. J. Mol. Sci. 2017, 18, 2658. [Google Scholar] [CrossRef] [PubMed]
- Giosafatto, C.; Al-Asmar, A.; D’Angelo, A.; Roviello, V.; Esposito, M.; Mariniello, L. Preparation and characterization of bioplastics from grass pea flour cast in the presence of microbial transglutaminase. Coatings 2018, 8, 435. [Google Scholar] [CrossRef]
- Sabbah, M.; Di Pierro, P.; Cammarota, M.; Dell’Olmo, E.; Arciello, A.; Porta, R. Development and properties of new chitosan-based films plasticized with spermidine and/or glycerol. Food Hydrocoll. 2019, 87, 245–252. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Moisture sensitivity, optical, mechanical and structural properties of whey protein-based edible films incorporated with rapeseed oil. Food Technol. Biotechnol. 2016, 54, 78–89. [Google Scholar] [CrossRef]
- Manrich, A.; Moreira, F.K.; Otoni, C.G.; Lorevice, M.V.; Martins, M.A.; Mattoso, L.H. Hydrophobic edible films made up of tomato cutin and pectin. Carbohydr. Polym. 2017, 164, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gago, M.B.; Krochta, J. Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films. J. Food Sci. 2001, 66, 705–710. [Google Scholar] [CrossRef]
- Ogunleye, A.; Irorere, V.U.; Williams, C.; Hill, D.; Bhat, A.; Radecka, I. Poly-γ-glutamic acid: Production, properties and applications. Microbiology 2015, 161, 1–17. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Whey protein edible films modified with almond and walnut oils. Food Hydrocoll. 2016, 52, 78–86. [Google Scholar] [CrossRef]
- Vejdan, A.; Ojagh, S.M.; Adeli, A.; Abdollahi, M. Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT-Food Sci. Technol. 2016, 71, 88–95. [Google Scholar] [CrossRef]
- Onwulata, C.I.; Isobe, S.; Tomasula, P.M.; Cooke, P.H. Properties of whey protein isolates extruded under acidic and alkaline conditions. J. Dairy Sci. 2006, 89, 71–81. [Google Scholar] [CrossRef]
Whey Protein (WP) Film Forming Solutions (FFSs) | Z-Average (d.nm) | Zeta-Potential (mV) | ||
---|---|---|---|---|
pH 7 | pH 12 | pH 7 | pH 12 | |
+ 30% GLY, heated | 147.1 ± 18.4 a,b | 418.9 ± 31.9 a | −27.0 ± 1.0 a | −35.3 ± 2.1 a |
+ 30% GLY | 1127.0 ± 167.4 c | 610.2 ± 56.5 b | −21.6 ± 0.4 b | −38.8 ± 2.6 a |
+ 40% GLY, heated | 110.5 ± 21.1 b | 415.4 ± 6.7 a | −29.1 ± 0.6 a | −35.4 ± 2.8 a |
+ 40% GLY | 522.6 ± 102.5 d | 519.2 ± 30.8 b | −22.9 ± 0.3 b | −35.9 ± 2.4 a |
+ 50% GLY, heated | 350.1 ± 13.8 d | 403.9 ± 19.7 a | −27.0 ± 0.1 a | −36.2 ± 3.3 a |
+ 50% GLY | 516.3 ± 23.1 d | 526.1 ± 23.1 b | −24.0 ± 0.4 b | −35.6 ± 2.9 a |
WP Films | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) | Thickness (μm) |
---|---|---|---|---|
+30% GLY, heated | 3.40 ± 0.90 a | 8.3 ± 4.8 a | 71.6 ± 14.2 a | 48 ± 7 a |
+30% GLY | 3.72 ± 0.61 a | 4.6 ± 0.8 a | 185.1 ± 16.2 b | 38 ± 4 a |
+40% GLY, heated | 1.41 ± 0.09 b | 21.3 ± 5.5 b | 34.0 ± 7.4 c | 44 ± 4 a |
+40% GLY | 2.72 ± 0.12 a | 33.9 ± 8.5 b | 86.2 ± 3.2 a | 66 ± 2 b |
+50% GLY, heated | 0.60 ± 0.11 c | 36.9 ± 10.8 b | 22.7 ± 5.1 c | 85 ± 5 c |
+50% GLY | 1.11 ± 0.12 b | 61.6 ± 8.6 c | 24.1 ± 4.7 c | 83 ± 2 c |
WP Films | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) | Thickness (μm) |
---|---|---|---|---|
+40% GLY, heated | 2.81 ± 0.72 a | 3.6 ± 0.7 a | 350.5 ± 63.4 a | 96 ± 6 a |
+50% GLY, heated | 3.20 ± 0.21 a | 20.8 ± 4.4 b | 164.7 ± 77.5 b | 129 ± 35 a |
Film Additive | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) | Thickness (μm) |
---|---|---|---|---|
None, pH 6 | ND | ND | ND | ND |
PGA, pH 6 | 0.05 ± 0.01 a | 1.4 ± 0.3 a | 149.0 ± 21.4 a | 45 ± 5 a |
None, pH 8 | ND | ND | ND | ND |
PGA, pH 8 | 1.31 ± 0.60 b | 2.1 ± 0.4 a | 155.8 ± 22.7 a | 70 ± 8 b |
None, pH 10 | ND | ND | ND | ND |
PGA, pH 10 | 0.90 ± 0.20 b | 1.8 ± 0.6 a | 124.1 ± 22.8 a | 73 ± 12 b |
None, pH 12 | 1.11 ± 0.10 b | 61.6 ± 8.6 b | 24.1 ± 4.7 b | 83 ± 2 c,b |
PGA, pH 12 | 1.11 ± 0.21 b | 3.1 ± 0.8 a | 104.9 ± 2.8 a | 98 ± 11 c |
Film Protein Source | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) | Thickness (μm) |
---|---|---|---|---|
Bitter vetch, pH 7 | 1.73 ± 0.27 a | 68.6 ± 14.7 a | 61.5 ± 15.0 a | 83 ± 8 a |
Bitter vetch, pH 12 | 2.01 ± 0.28 a | 87.9 ± 19.0 a | 47.9 ± 10.9 a | 99 ± 9 a |
Grass pea, pH 7 | 8.59 ± 0.41 b | 68.3 ± 30.2 a | 483.0 ± 62.9 b | 110 ± 9 a |
Grass pea, pH 12 | 4.08 ± 0.39 c | 35.0 ± 12.6 b | 418.0 ± 44.9 b | 117 ± 10 a |
Soy, pH 7 | 1.59 ± 0.36 a | 105.3 ± 17.7 c | 87.4 ± 19.6 a | 82 ± 7 a |
Soy, pH 12 | 11.40 ± 1.80 d | 16.8 ± 8.7 b | 574.8 ± 43.3 b | 43 ± 3 b |
Whey Protein (WP) Films | Opacity (A600/mm) |
---|---|
+30% GLY, heated, pH 12 | 1.18 ± 0.64 a |
+30% GLY, pH 12 | 2.65 ± 0.11 b |
+40% GLY, heated, pH 12 | 1.23 ± 0.05 a |
+40% GLY, pH 12 | 2.07 ± 0.25 a,b |
+50% GLY, heated, pH 12 | 1.57 ± 0.13 a,b |
+50% GLY, pH 12 | 2.20 ± 0.81 a,b |
+40% GLY, heated, pH 7 | 1.66 ± 0.01 a,b |
+50% GLY, heated, pH 7 | 1.27 ± 0.01 a |
Polypropylene * | 32.02 ± 3.35 |
Cellulose triacetate * | 0.54 ± 0.09 |
Whey Protein (WP) Film | Moisture Content (%) | Moisture Uptake (%) |
---|---|---|
+30% GLY, heated, pH 12 | 15.24 ± 1.32 a | 13.31 ± 1.00 a |
+30% GLY, pH 12 | 20.35 ± 1.20 b | 15.05 ± 0.73 a |
+40% GLY, heated, pH 12 | 18.39 ± 1.94 b | 15.70 ± 0.04 a |
+40% GLY, pH 12 | 25.65 ± 0.69 c | 15.98 ± 2.10 a |
+50% GLY, heated, pH 12 | 18.93 ± 3.30 b | 14.90 ± 0.66 a |
+50% GLY, pH 12 | 29.50 ± 2.30 d | 16.56 ± 0.77 a |
+40% GLY, heated, pH 7 | 21.43 ± 0.32 b | 9.12 ± 0.85 b |
+50% GLY, heated, pH 7 | 33.27 ± 0.50 e | 9.01 ± 0.72 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalrazeq, M.; Giosafatto, C.V.L.; Esposito, M.; Fenderico, M.; Di Pierro, P.; Porta, R. Glycerol-Plasticized Films Obtained from Whey Proteins Denatured at Alkaline pH. Coatings 2019, 9, 322. https://doi.org/10.3390/coatings9050322
Abdalrazeq M, Giosafatto CVL, Esposito M, Fenderico M, Di Pierro P, Porta R. Glycerol-Plasticized Films Obtained from Whey Proteins Denatured at Alkaline pH. Coatings. 2019; 9(5):322. https://doi.org/10.3390/coatings9050322
Chicago/Turabian StyleAbdalrazeq, Manar, C. Valeria L. Giosafatto, Marilena Esposito, Maria Fenderico, Prospero Di Pierro, and Raffaele Porta. 2019. "Glycerol-Plasticized Films Obtained from Whey Proteins Denatured at Alkaline pH" Coatings 9, no. 5: 322. https://doi.org/10.3390/coatings9050322
APA StyleAbdalrazeq, M., Giosafatto, C. V. L., Esposito, M., Fenderico, M., Di Pierro, P., & Porta, R. (2019). Glycerol-Plasticized Films Obtained from Whey Proteins Denatured at Alkaline pH. Coatings, 9(5), 322. https://doi.org/10.3390/coatings9050322