Studies on the Morphological and Mechanical Properties of TiZrHfNiCuCo Metallic Coatings Deposited by DC Magnetron Sputtering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Tsai, K.Y.; Tsai, M.H.; Yeh, J.W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Kim, H.; Nam, S.; Roh, A.; Son, M.; Ham, M.-H.; Kim, J.-H.; Choi, H. Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films. Int. J. Refract. Met. Hard Mater. 2019, 80, 286–291. [Google Scholar] [CrossRef]
- Zhu, Z.-X.; Liu, X.-B.; Liu, Y.-F.; Zhang, S.-Y.; Meng, Y.; Zhou, H.-B.; Zhang, S.-H. Effects of Cu/Si on the microstructure and tribological properties of FeCoCrNi high entropy alloy coating by laser cladding. Wear 2023, 512, 204533. [Google Scholar] [CrossRef]
- Patel, P.; Nair, R.B.; Supekar, R.; McDonald, A.; Chromik, R.R.; Moreau, C.; Stoyanov, P. Enhanced wear resistance of AlCoCrFeMo high entropy coatings (HECs) through various thermal spray techniques. Surf. Coatings Technol. 2024, 477, 130311. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, R.; Ma, H.; Jin, H.; Wang, L.; He, S.; Yin, F. Microstructure, mechanical properties and tribological behavior of (TiZrHfNbTa) Nx high entropy films deposited by magnetron sputtering. Ceram. Int. 2024, 50, 13070–13081. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Obeydavi, A.; Shafyei, A.; Lee, J.-W. Effect of sputtering power and substrate bias on microstructure, mechanical properties and corrosion behavior of CoCrFeMnNi high entropy alloy thin films deposited by magnetron sputtering method. Intermetallics 2024, 172, 108369. [Google Scholar] [CrossRef]
- El-Atwani, O.; Li, N.; Li, M.; Devaraj, A.; Baldwin, J.K.S.; Schneider, M.M.; Sobieraj, D.; Wróbel, J.S.; Nguyen-Manh, D.; Maloy, S.A. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci. Adv. 2019, 5, eaav2002. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, J.; Gao, X.; Wang, Y.; Cui, J.; Wang, T.; Chang, H. Irradiation effects in high-entropy alloys and their applications. J. Alloys Compd. 2023, 930, 166768. [Google Scholar] [CrossRef]
- Yan, X.H.; Li, J.S.; Zhang, W.R.; Zhang, Y. A brief review of high-entropy films. Mater. Chem. Phys. 2018, 210, 12–19. [Google Scholar] [CrossRef]
- Jin, H.; Seok, Y.; Hoon, Y.; Hwan, S.; Sik, K.; Koon, Y.; Buem, K. Design of nano-scale multilayered nitride hard coatings deposited by arc ion plating process: Microstructural and mechanical characterization. J. Mater. Res. Technol. 2021, 15, 572–581. [Google Scholar] [CrossRef]
- Pierson, H.O. Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications; Noyes Publications: Trenton, NJ, USA, 1996. [Google Scholar]
- Li, W.; Liu, P.; Liaw, P.K. Microstructures and properties of high-entropy alloy films and coatings: A review. Mater. Res. Lett. 2018, 6, 199–229. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, Y.S.; Mun, S.C.; Hong, S.H.; Wang, W.-M.; Kim, K.B. Designing of Fe-containing (Ti33Zr33Hf33)-(Ni50Cu50) high entropy alloys developed by equiatomic substitution: Phase evolution and mechanical properties. J. Mater. Res. Technol. 2020, 9, 7732–7739. [Google Scholar] [CrossRef]
- Braeckman, B.R.; Depla, D. Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films. J. Alloys Compd. 2015, 646, 810–815. [Google Scholar] [CrossRef]
- Cui, K.; Zhang, Y. High-entropy alloy films. Coatings 2023, 13, 635. [Google Scholar] [CrossRef]
- Zhao, K.; Hao, X.; Ma, D.; Huang, B.; Zhao, X.; Ma, J.; Wang, C. The key role in the structure and properties of a novel CrNiTiMo high-entropy alloys films prepared by magnetron sputtering: Bias voltage. J. Mater. Res. Technol. 2024. [Google Scholar] [CrossRef]
- Liao, W.; Lan, S.; Gao, L.; Zhang, H.; Xu, S.; Song, J.; Wang, X.; Lu, Y. Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films 2017, 638, 383–388. [Google Scholar] [CrossRef]
- Seok, Y.; Jin, H.; Chul, S.; Jumaev, E.; Hwan, S.; Song, G.; Tae, J.; Koon, Y.; Sik, K.; Il, S.; et al. Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin fi lms synthesized by magnetron sputtering. J. Alloys Compd. 2019, 797, 834–841. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Park, H.-J.; Kim, Y.-S.; Hong, S.-H.; Kim, K.-B. Influence of the Gas Flow Rate on the Crack Formation of AlCoCrNi High-Entropy Metallic Film Fabricated Using Magnetron Sputtering. Coatings 2024, 14, 144. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, H.J.; Lim, K.S.; Hong, S.H.; Kim, K.B. Structural and mechanical properties of AlCoCrNi high entropy nitride films: Influence of process pressure. Coatings 2019, 10, 10. [Google Scholar] [CrossRef]
- Al-Mansoori, M.; Al-Shaibani, S.; Al-Jaeedi, A.; Lee, J.; Choi, D.; Hasoon, F.S. Effects of gas flow rate on the structure and elemental composition of tin oxide thin films deposited by RF sputtering. AIP Adv. 2017, 7, 125105. [Google Scholar] [CrossRef]
- Vijaya, G.; Singh, M.M.; Krupashankara, M.S.; Kulkarni, R.S. Effect of argon gas flow rate on the optical and mechanical properties of sputtered tungsten thin film coatings. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 149, p. 12075. [Google Scholar] [CrossRef]
- An, Z.; Ding, H.; Meng, Q.; Rong, Y. Kinetic equation of the effect of thickness on grain growth in nanocrystalline films. Scr. Mater. 2009, 61, 1012–1015. [Google Scholar] [CrossRef]
- Park, H.J.; Na, Y.S.; Hong, S.H.; Kim, J.T.; Kim, Y.S.; Lim, K.R.; Park, J.M.; Kim, K.B. Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys. Met. Mater. Int. 2016, 22, 551–556. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Qi, Z.; Wu, Z.; Zhang, D.; Wei, B.; Wang, J.; Wang, Z. Effect of sputtering power on the chemical composition, microstructure and mechanical properties of CrN x hard coatings deposited by reactive magnetron sputtering. Vaccum 2017, 145, 136–143. [Google Scholar] [CrossRef]
- Srinivas, K.; Raja, M.M.; Rao, D.V.S.; Kamat, S.V. Effect of sputtering pressure and power on composition, surface roughness, microstructure and magnetic properties of as-deposited Co2FeSi thin films. Thin Solid Films 2014, 558, 349–355. [Google Scholar] [CrossRef]
- Tsai, D.-C.; Chang, Z.-C.; Kuo, B.-H.; Chen, B.-C.; Chen, E.-C.; Shieu, F.-S. Wide variation in the structure and physical properties of reactively sputtered (TiZrHf) N coatings under different working pressures. J. Alloys Compd. 2018, 750, 350–359. [Google Scholar] [CrossRef]
- Venkatesh, R.; Banapurmath, N.R.; Modagi, S.; Hallod, S.A.; Shetter, A.S. Analysis of the effect of sputter power on the morphological and mechanical characteristics of titanium thin films deposited on high-speed steel (HSS). Mater. Today Proc. 2020, 27, 59–61. [Google Scholar] [CrossRef]
- Mahan, J.E. Physical Vapor Deposition of Thin Films; Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- Campbell, S.A. The Science and Engineering of Microelectronic Fabrication; Oxford Press: New York, NY, USA, 2001. [Google Scholar]
- Tsai, D.-C.; Chang, Z.-C.; Kuo, B.-H.; Tsao, C.-T.; Chen, E.-C.; Shieu, F.-S. Influence of discharge power on the structural, electro-optical, and mechanical properties of (TiZrHf) N coatings. J. Alloys Compd. 2015, 622, 446–457. [Google Scholar] [CrossRef]
- Chan, K.-Y.; Teo, B.-S. Sputtering power and deposition pressure effects on the electrical and structural properties of copper thin films. J. Mater. Sci. 2005, 40, 5971–5981. [Google Scholar] [CrossRef]
- El-Kadry, N.; Ashour, A.; Mahmoud, S.A. Structural dependence of dc electrical properties of physically deposited CdTe thin films. Thin Solid Films 1995, 269, 112–116. [Google Scholar] [CrossRef]
- Mohri, M.; Wang, D.; Ivanisenko, J.; Gleiter, H.; Hahn, H. Investigation of the deposition conditions on the microstructure of TiZrCuPd nano-glass thin films. Mater. Charact. 2017, 131, 140–147. [Google Scholar] [CrossRef]
- Ren, B.; Shen, Z.; Liu, Z. Structure and mechanical properties of multi-element (AlCrMnMoNiZr) Nx coatings by reactive magnetron sputtering. J. Alloys Compd. 2013, 560, 171–176. [Google Scholar] [CrossRef]
- Chang, H.-W.; Huang, P.-K.; Davison, A.; Yeh, J.-W.; Tsau, C.-H.; Yang, C.-C. Nitride films deposited from an equimolar Al–Cr–Mo–Si–Ti alloy target by reactive direct current magnetron sputtering. Thin Solid Films 2008, 516, 6402–6408. [Google Scholar] [CrossRef]
- Lin, C.H.; Duh, J.G.; Yeh, J.W. Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surf. Coatings Technol. 2007, 201, 6304–6308. [Google Scholar] [CrossRef]
- Hruška, P.; Lukáč, F.; Cichoň, S.; Vondráček, M.; Čížek, J.; Fekete, L.; Lančok, J.; Veselý, J.; Minárik, P.; Cieslar, M. Oxidation of amorphous HfNbTaTiZr high entropy alloy thin films prepared by DC magnetron sputtering. J. Alloys Compd. 2021, 869, 157978. [Google Scholar] [CrossRef]
- Wang, N.; Cao, Q.; Wang, X.; Ding, S.; Zhang, D.; Jiang, J.-Z. Ultra-strong and ductile amorphous-crystalline Ti-Zr-Hf-Nb-Ta/Co-Ni-V nanolaminate thin films. J. Alloys Compd. 2024, 973, 172874. [Google Scholar] [CrossRef]
- Mason, R.S.; Pichilingi, M. Sputtering in a glow discharge ion source-pressure dependence: Theory and experiment. J. Phys. D. Appl. Phys. 1994, 27, 2363. [Google Scholar] [CrossRef]
- French, B.L.; Bilello, J.C. In situ observations of the real-time stress-evolution and delamination of thin Ta films on Si (100). Thin Solid Films 2004, 446, 91–98. [Google Scholar] [CrossRef]
- Hong, S.H.; Park, H.J.; Kang, G.C.; Kim, Y.S.; Song, G.; Kim, K.B. Nanocrystalline single-phase high-entropy alloy synthesized by using intermetallic compound type (TiZrHf)-(NiCuCo) high-entropy metallic glass precursor. Scr. Mater. 2022, 209, 114391. [Google Scholar] [CrossRef]
- He, W.; Bhole, S.D.; Chen, D. Modeling the dependence of strength on grain sizes in nanocrystalline materials. Sci. Technol. Adv. Mater. 2008, 9, 15003. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ding, Z.Y.; Li, F.C.; Yang, Y. Controlled synthesis of nanostructured glassy and crystalline high entropy alloy films. Nanotechnology 2019, 31, 45601. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, W.L.; Xie, Q.Y.; Zhang, W.X.; Jiang, H.C. Effect of sputtering pressure on microstructure and magnetic properties of amorphous FeCoSiB films. J. Non. Cryst. Solids 2013, 365, 59–62. [Google Scholar] [CrossRef]
Sample Number | Substrate Temperature | Rotation Speed (RPM) | DC Power (W) | Deposition Time (min) | Ar Flow Ratio (sccm) |
---|---|---|---|---|---|
1 | RT | 10 | 100 | 30 | 20 |
2 | 200 | 30 | 20 | ||
3 | 300 | 30 | 20 | ||
4 | 300 | 30 | 15 | ||
5 | 300 | 30 | 10 | ||
6 | 300 | 30 | 5 |
Experimental Condition | Elements (at%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Zr | Hf | Ni | Cu | Co | O | |
100 W, 20 sccm | 11.13 ± 0.018 | 12.90 ± 0.020 | 14.50 ± 0.020 | 12.78 ± 0.051 | 16.73 ± 0.051 | 13.25 ± 0.036 | 18.73 ± 0.085 |
200 W, 20 sccm | 12.78 ± 0.131 | 14.25 ± 0.104 | 16.80 ± 0.041 | 13.95 ± 0.247 | 17.15 ± 0.189 | 14.68 ± 0.175 | 10.38 ± 0.333 |
300 W, 20 sccm | 12.88 ± 0.111 | 14.40 ± 0.082 | 16.70 ± 0.071 | 14.10 ± 0.183 | 18.03 ± 0.063 | 14.93 ± 0.095 | 9.03 ± 0.309 |
300 W, 15 sccm | 15.00 ± 0.147 | 16.05 ± 0.104 | 16.03 ± 0.095 | 15.40 ± 0.135 | 15.93 ± 0.214 | 15.78 ± 0.048 | 5.90 ± 0.502 |
300 W, 10 sccm | 14.98 ± 0.048 | 16.20 ± 0.071 | 16.13 ± 0.085 | 15.73 ± 0.103 | 15.50 ± 0.168 | 16.05 ± 0.189 | 5.40 ± 0.518 |
300 W, 05 sccm | 15.15 ± 0.194 | 15.65 ± 0.104 | 15.78 ± 0.165 | 16.13 ± 0.103 | 15.83 ± 0.085 | 16.70 ± 0.091 | 4.73 ± 0.295 |
Condition | 100 W, 20 sccm | 200 W, 20 sccm | 300 W, 20 sccm | 300 W, 15 sccm | 300 W, 10 sccm | 300 W, 05 sccm |
---|---|---|---|---|---|---|
Roughness (Ra) | 4.333 ± 0.609 | 1.990 ± 0.229 | 1.425 ± 0.115 | 0.870 ± 0.024 | 0.645 ± 0.018 | 0.603 ± 0.006 |
Mechanical Properties | |||
---|---|---|---|
Method | Condition | HIT (GPa) | HVIT (HV) |
Magnetron Sputtering | 100 W, 20 sccm | 5.604 ± 0.055 | 519.0 ± 5.46 |
200 W, 20 sccm | 6.781 ± 0.124 | 628.0 ± 11.52 | |
300 W, 20 sccm | 9.04 ± 0.214 | 837.4 ± 19.86 | |
300 W, 15 sccm | 10.78 ± 0.180 | 998.2 ± 16.73 | |
300 W, 10 sccm | 11.56 ± 0.247 | 1070 ± 22.84 | |
300 W, 05 sccm | 11.64 ± 0.236 | 1078 ± 21.89 | |
Melt-spinning | Cu wheel with a rotating speed of 40 m/s | 7.88 ± 0.051 | 729.91 ± 4.711 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-S.; Park, H.-J.; Seo, J.-O.; Shin, J.-W.; Hong, S.-H.; Kim, K.-B. Studies on the Morphological and Mechanical Properties of TiZrHfNiCuCo Metallic Coatings Deposited by DC Magnetron Sputtering. Coatings 2024, 14, 1179. https://doi.org/10.3390/coatings14091179
Kim Y-S, Park H-J, Seo J-O, Shin J-W, Hong S-H, Kim K-B. Studies on the Morphological and Mechanical Properties of TiZrHfNiCuCo Metallic Coatings Deposited by DC Magnetron Sputtering. Coatings. 2024; 14(9):1179. https://doi.org/10.3390/coatings14091179
Chicago/Turabian StyleKim, Young-Soon, Hae-Jin Park, Jin-Oh Seo, Ji-Woo Shin, Sung-Hwan Hong, and Ki-Buem Kim. 2024. "Studies on the Morphological and Mechanical Properties of TiZrHfNiCuCo Metallic Coatings Deposited by DC Magnetron Sputtering" Coatings 14, no. 9: 1179. https://doi.org/10.3390/coatings14091179
APA StyleKim, Y.-S., Park, H.-J., Seo, J.-O., Shin, J.-W., Hong, S.-H., & Kim, K.-B. (2024). Studies on the Morphological and Mechanical Properties of TiZrHfNiCuCo Metallic Coatings Deposited by DC Magnetron Sputtering. Coatings, 14(9), 1179. https://doi.org/10.3390/coatings14091179