Atomic-Scale Structural and Magnetic Coupling Properties of Twin Boundaries in Lithium Ferrite (Li0.5Fe2.5O4) Film
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez-Lievanos, K.R.; Stair, J.L.; Knowles, K.E. Cation Distribution in Spinel Ferrite Nanocrystals: Characterization, Impact on their Physical Properties, and Opportunities for Synthetic Control. Inorg. Chem. 2021, 60, 4291–4305. [Google Scholar] [CrossRef]
- McKenna, K.P.; Hofer, F.; Gilks, D.; Lazarov, V.K.; Chen, C.; Wang, Z.; Ikuhara, Y. Atomic-scale Structure and Properties of Highly Stable Antiphase Boundary Defects in Fe3O4. Nat. Commun. 2014, 5, 5740. [Google Scholar] [CrossRef] [PubMed]
- Mi, S.B.; Zhang, R.Y.; Lu, L.; Liu, M.; Wang, H.; Jia, C.L. Atomic-scale Structure and Formation of Antiphase Boundaries in α-Li0.5Fe2.5O4 Thin Films on MgAl2O4(001) Substrates. Acta Mater. 2017, 127, 178–184. [Google Scholar] [CrossRef]
- Singh, A.V.; Khodadadi, B.; Mohammadi, J.B.; Keshavarz, S.; Mewes, T.; Negi, D.S.; Datta, R.; Galazka, Z.; Uecker, R.; Gupta, A. Bulk Single Crystal-Like Structural and Magnetic Characteristics of Epitaxial Spinel Ferrite Thin Films with Elimination of Antiphase Boundaries. Adv. Mater. 2017, 29, 1701222. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, M.; Qu, K.; Gao, P.; Mi, W. Atomic-Scale Mechanism of Grain Boundary Effects on the Magnetic and Transport Properties of Fe3O4 Bicrystal Films. ACS Appl. Mater. Interfaces 2021, 13, 6889–6896. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lu, J.; Jin, L.; Rusz, J.; Kocevski, V.; Yanagihara, H.; Kita, E.; Mayer, J.; Dunin-Borkowski, R.E.; Xiang, H.; et al. Atomic Structure and Electron Magnetic Circular Dichroism of Individual Rock Salt Structure Antiphase Boundaries in Spinel Ferrites. Adv. Funct. Mater. 2021, 31, 2008306. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, Y.; Yao, T.; Tao, A.; Yan, X.; Li, X.; Chen, C.; Ma, X.-L.; Ye, H. Atomic Origin of Magnetic Coupling of Antiphase Boundaries in Magnetite Thin films. J. Mater. Sci. Technol. 2022, 107, 92–99. [Google Scholar] [CrossRef]
- Margulies, D.T.; Parker, F.T.; Rudee, M.L.; Spada, F.E.; Chapman, J.N.; Aitchison, P.R.; Berkowitz, A.E. Origin of the Anomalous Magnetic Behavior in Single Crystal Fe3O4 Films. Phys. Rev. Lett. 1997, 79, 5162. [Google Scholar] [CrossRef]
- Xu, K.; Lin, T.; Rao, Y.; Wang, Z.; Yang, Q.; Zhang, H.; Zhu, J. Direct Investigation of the Atomic Structure and Decreased Magnetism of Antiphase Boundaries in Garnet. Nat. Commun. 2022, 13, 3206. [Google Scholar] [CrossRef]
- Wu, H.C.; Abid, M.; Chun, B.S.; Ramos, R.; Mryasov, O.N.; Shvets, I.V. Probing One Antiferromagnetic Antiphase Boundary and Single Magnetite Domain Using Nanogap Contacts. Nano Lett. 2010, 10, 1132–1136. [Google Scholar] [CrossRef]
- Xu, K.; Hung, S.-W.; Si, W.; Wu, Y.; Huo, C.; Yu, P.; Zhong, X.; Zhu, J. Topotactically Transformable Antiphase Boundaries with Enhanced Ionic Conductivity. Nat. Commun. 2023, 14, 7382. [Google Scholar] [CrossRef] [PubMed]
- Leung, G.W.; Vickers, M.E.; Yu, R.; Blamire, M.G. Epitaxial Growth of Fe3O4 (111) on SrTiO3 (001) Substrates. J. Cryst. Growth 2008, 310, 5282–5286. [Google Scholar] [CrossRef]
- Lee, D.; Trang, T.T.T.; Heo, Y.-U. Role of Dislocation Climb on Twin Boundary and Antiphase Boundary Formations in Inverse-Spinel MnAl2O4. J. Alloy Compd. 2023, 958, 170526. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, H.; Sun, X.; Li, X.; Liu, Z.; Zhang, J.; Luo, J.; Zhang, J.; Tao, X.S.; Ding, J.; et al. Ultrafast Non-Equilibrium Phase Transition Induced Twin Boundaries of Spinel Lithium Manganate. Adv. Energy Mater. 2024, 14, 2302484. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Seki, T.; Yin, D.; Sanchez-Santolino, G.; Inoue, K.; Shibata, N.; Ikuhara, Y. Direct Determination of Atomic Structure and Magnetic Coupling of Magnetite Twin Boundaries. ACS Nano 2018, 12, 2662–2668. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, R.; Lu, L.; Mi, S.; Liu, M.; Wang, H.; Wu, S.; Jia, C. Atomic-scale Investigation of Spinel LiFe5O8 Thin Films on SrTiO3 (001) Substrates. J. Mater. Sci. Technol. 2020, 40, 31–38. [Google Scholar] [CrossRef]
- Dehghani Dastjerdi, O.; Shokrollahi, H.; Mirshekari, S. A Review of Synthesis, Characterization, and Magnetic Properties of Soft Spinel Ferrites. Inorg. Chem. Commun. 2023, 153, 110797. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, K.S.; Jong, U.G.; Kang, C.J.; Ri, S.C.; Yu, C.J. First-principles Study on Structural, Electronic, Magnetic and Thermodynamic Properties of Lithium Ferrite LiFe5O8. RSC Adv. 2022, 12, 15973–15979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, M.; Lu, L.; Mi, S.-B.; Wang, H. Strain-tunable Magnetic Properties of Epitaxial Lithium Ferrite Thin Film on MgAl2O4 Substrates. J. Mater. Chem. C 2015, 3, 5598–5602. [Google Scholar] [CrossRef]
- Madsen, J.; Susi, T. The abTEM code: Transmission Electron Microscopy from First Principles. Open Res. Eur. 2021, 1, 24. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Chadi, D.J. Special Points for Brillouin-zone Integrations. Phys. Rev. B 1977, 16, 1746–1747. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band Theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44, 943. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.A.; Yau, J.K.; Anderson, H.U. Structural Characteristics of Sr1−xLaxTi3+δ as a Function of Oxygen Partial Pressure at 1400 °C. J. Appl. Phys. 1989, 65, 1492–1498. [Google Scholar] [CrossRef]
- Pennycook, S.J.; Boatner, L.A. Chemically Sensitive Structure-imaging with a Scanning Transmission Electron microscope. Nature 1988, 336, 565–567. [Google Scholar] [CrossRef]
- Desai, H.B.; Tanna, A.R. Effect of Substitution on the Electric and Magnetic Properties of Ferrites. In Ferrites and Multiferroics: Engineering Materials; Bhargava, G.K., Bhardwaj, S., Singh, M., Batoo, K.M., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Liu, K.; Zhang, R.; Lu, L.; Li, J.; Zhang, S. Effect of Film Thickness on Microstructural and Magnetic Properties of Lithium Ferrite Films Prepared on Strontium Titanate (001) Substrates. Coatings 2023, 13, 2097. [Google Scholar] [CrossRef]
- Vronka, M.; Straka, L.; Graef, M.D.; Heczko, O. Antiphase Boundaries, Magnetic Domains, and Magnetic Vortices in Ni–Mn–Ga Single Crystals. Acta Mater. 2020, 184, 179–186. [Google Scholar] [CrossRef]
Type of TBs | Formation Energy (J/m2) | Exchange Coupling Energy (EFM-EAFM) (J/m2) | Magnetic Coupling |
---|---|---|---|
TB I | 1.67 | 0.39 | AFM |
TB II | 0.75 | 0.47 | AFM |
TB III | 2.80 | −0.06 | FM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Li, J.; Zhang, S. Atomic-Scale Structural and Magnetic Coupling Properties of Twin Boundaries in Lithium Ferrite (Li0.5Fe2.5O4) Film. Coatings 2024, 14, 903. https://doi.org/10.3390/coatings14070903
Liu K, Li J, Zhang S. Atomic-Scale Structural and Magnetic Coupling Properties of Twin Boundaries in Lithium Ferrite (Li0.5Fe2.5O4) Film. Coatings. 2024; 14(7):903. https://doi.org/10.3390/coatings14070903
Chicago/Turabian StyleLiu, Kun, Jiankang Li, and Songyou Zhang. 2024. "Atomic-Scale Structural and Magnetic Coupling Properties of Twin Boundaries in Lithium Ferrite (Li0.5Fe2.5O4) Film" Coatings 14, no. 7: 903. https://doi.org/10.3390/coatings14070903
APA StyleLiu, K., Li, J., & Zhang, S. (2024). Atomic-Scale Structural and Magnetic Coupling Properties of Twin Boundaries in Lithium Ferrite (Li0.5Fe2.5O4) Film. Coatings, 14(7), 903. https://doi.org/10.3390/coatings14070903