Evaluation of the Antimicrobial Effect of Ag Nanoparticles on Nickel–Titanium Archwires in the Presence of Streptococcus mutans Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of the Minimum Inhibitory Concentration of Silver Nanoparticles
2.2. Evaluation of NiTi Archwires with AgNPs in Artificial Saliva
2.3. Characterization of NiTi Archwires AgNPs in the Presence of S. mutans
3. Results and Discussion
3.1. Cell Culture of the S. mutans
3.2. Analysis of the Determination of the Minimum Inhibitory Concentration
3.3. Characterization of NiTi Archwires in the Absence of Silver Nanoparticles and S. mutans by SEM
3.4. Characterization of NiTi Archwires in the Presence of S. mutans and AgNPs by SEM
3.5. Control Graph of NiTi Archwires-AgNPs
3.6. Fast Fourier Transform Analysis
3.7. Power Spectral Density (PSD) Analysis
3.8. Coefficient of Determination R2
3.9. Texture Isotropy Analysis
3.10. Material Relation Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mhaske, A.; Shetty, P.; Bhat, N.; Ramachandra, C.; Laxmikanth, S.; Nagarahalli, K. Antiadherent and antibacterial properties of stainless steel and NiTi orthodontic wires coated with silver against Lactobacillus acidophilus—An in vitro study. Prog. Orthod. 2015, 16, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Perkowski, K.; Baltaza, W.; Conn, D.; Marczyńska, M.; Chomicz, L. Examination of oral biofilm microbiota in patients using fixed orthodontic appliances in order to prevent risk factors for health complications. Ann. Agric. Environ. Med. 2019, 26, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Wade, W. The oral microbiome in health and disease. Pharmacol. Res. 2013, 69, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Warreth, A. Dental Caries and Its Management. Int. J. Dent. 2023, 9, 36–58. [Google Scholar] [CrossRef]
- Karadas, M.; Cantekin, K.; Celikoglu, M. Effects of orthodontic treatment with a fixed appliance on the caries experience of patients with high and low risk of caries. J. Dent. Sci. 2011, 6, 195–199. [Google Scholar] [CrossRef]
- Ogaard, B.; Rølla, G.; Arends, J. Orthodontic appliances and enamel demineralization. Lesion development. Am. J. Orthod. Dentofac. Orthop. 1988, 94, 68–73. [Google Scholar] [CrossRef]
- Velazquez, U.; Scougall, R.; Contreras, R.; Flores, J.; Uematsu, S.; Yamaguchi, R. Adhesion of Streptococci to various orthodontic composite resins. Aust. Dent. J. 2013, 58, 101–105. [Google Scholar] [CrossRef]
- Lucchese, A.; Gherlone, E. Prevalence of white-spot lesions before and during orthodontic treatment with fixed appliances. Eur. J. Orthod. 2013, 35, 664–668. [Google Scholar] [CrossRef]
- Jeevarathan, J.; Deepti, A.; Muthu, M.; Rathna, V.; Chamundeeswari, G. Effect of fluoride varnish on Streptococcus mutans counts in plaque of caries-free children using Dentocult SM strip mutans test: A randomized controlled tripleblind study. J. Indian Soc. Pedod. Prev. Dent. 2007, 25, 157–163. [Google Scholar] [CrossRef]
- Jordan, C.; LeBlanc, D. Influences of orthodontic appliances on oral populations of mutans streptococci. Oral. Microbiol. Immunol. 2002, 17, 65–71. [Google Scholar] [CrossRef]
- Parahitiyawa, N.B.; Jin, L.J.; Leung, W.K.; Yam, W.C.; Samaranayake, L.P. Microbiology of odontogenic bacteremia: Beyond endocarditis. Clin. Microbiol. Rev. 2009, 22, 46–64. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Sun, X. Antibacterial Mechanism of Nanosilvers. Curr. Pharmacol. Rep. 2019, 5, 401–409. [Google Scholar] [CrossRef]
- Salgado, I.; Beatriz, A.; Navarro, N.; Coleta, K.; Araujo, A.; De, O. Antimicrobial Orthodontic Wires Coated with Silver Nanoparticles. Braz. Arch. Biol. Technol. 2020, 63, e20190339. [Google Scholar]
- Abraham, S.; Jagdish, N.; Kailasam, V.; Padmanabhan, S. Streptococcus mutans adhesion on nickel titanium (NiTi) and copper-NiTi archwires: A comparative prospective clinical study. Angle Orthod. 2017, 87, 448–454. [Google Scholar] [CrossRef]
- Junior, V.; Targino, A.; Pelagio, A.; Rodríguez, J.; Teixeira, J.; Heimer, M. Antimicrobial activity of silver nanoparticle colloids of different sizes and shapes against Streptococcus mutans. Res. Chem. Intermed. 2017, 43, 5889–5899. [Google Scholar] [CrossRef]
- Ghasemi, T.; Arash, V.; Rabiee, S.; Rajabnia, R.; Pourzare, A.; Rakhshan, V. Antimicrobial effect frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: A preliminary study. Microsc. Res. Tech. 2017, 80, 599–607. [Google Scholar] [CrossRef]
- Ryu, S.; Bae, H.; Lee, K.; Hwang, S.; Lee, H.; Koh, T. Antibacterial effect of silver-platinum coating for orthodontic appliances. Angle Orthod. 2012, 82, 15–17. [Google Scholar] [CrossRef]
- Hernández, E.; Lara, E.; Robles, B.; Scougall, J.; Hernández, S.; Medina, E. Biosynthesis of Silver Nanoparticles on Orthodontic Elastomeric Modules: Evaluation of Mechanical and Antibacterial Properties. Molecules 2017, 22, 1407. [Google Scholar] [CrossRef]
- Borzabadi-Farahani, A.; Borzabadi, E.; Lynch, E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol. Scand. 2014, 72, 413–417. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzynski, M.; Dobrzynski, W.; Zawadzka, A.; Janecki, M.; Kurek, K. Nanomaterials Application in Orthodontics. Nanomaterials 2021, 11, 337. [Google Scholar] [CrossRef]
- Uysal, I.; Yilmaz, B.; Atilla, A.; Evis, Z. Nickel titanium alloys as orthodontic archwires: A narrative review. Eng. Sci. Technol. Int. J. 2022, 36, 101–277. [Google Scholar] [CrossRef]
- Močnik, P.; Kosec, T. A Critical Appraisal of the Use and Properties of Nickel–Titanium Dental Alloys. Materials 2021, 14, 7859. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Gorup, F.; Takamiya, S.; Ruvollo, C.; De, R.; Barbosa, B. The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents 2009, 34, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Hannig, M.; Kriener, L.; Hoth, W.; Becker, C.; Schmidt, H. Influence of nanocomposite surface coating on biofilm formation in situ. J. Nanosci. Nanotechnol. 2007, 7, 4642–4648. [Google Scholar] [CrossRef]
- Allaker, R.P. The use of nanoparticles to control oral biofilm formation. J. Dent. Res. 2010, 89, 1175–1186. [Google Scholar] [CrossRef]
- Bącela, J.; Łabowska, M.B.; Detyna, J.; Zięty, A.; Michalak, I. Functional coatings for orthodontic archwires—A review. Materials 2020, 13, 3257. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Cacciafesta, V.; Maffia, E.; Massironi, S.; Scribante, A.; Alberti, G.; Biesuz, R.; Klersy, C. Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets. Angle Orthod. 2009, 79, 361–367. [Google Scholar] [CrossRef]
- Nambi, N.; Shrinivaasan, N.R.; Dhayananth, L.; Chajallani, V.; George, A. Renaissance in orthodontics: Nanotechnology. Int. J. Orthod. Rehabil. 2016, 7, 139. [Google Scholar]
- Umalkar, G.; Jawale, A.; Patil, S. Review application of nanotechnology in orthodontics: A critical review. Int. J. Clin. Orthod. 2017, 1, 9–12. [Google Scholar]
- Metin, G.; Taner, L.; Akca, G. Nanosilver coated orthodontic brackets: In vivo antibacterial properties and ion release. Eur. J. Orthod. 2017, 39, 9–16. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Ogaard, B.; Rølla, G.; Arends, J.; ten Cate, J.M. Orthodontic appliances and enamel demineralization. Prevention and treatment of lesions. Am. J. Orthod. Dentofac. Orthop. 1988, 94, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Fatani, J.; Almutairi, H.; Alharbi, O.; Alnakhli, O.; Divakar, D. Muzaheed, In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag foranti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Microb. Pathog. 2017, 112, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine 2010, 6, 103–109. [Google Scholar] [CrossRef]
- Niska, K.; Knap, N.; Kędzia, A.; Jaskiewicz, M.; Kamysz, W.; Inkielewicz Stepniak, I. Capping agent-dependent toxicity and antimicrobial activity of silver nanoparticles: An in vitro study. Concerns about potential application in dental practice. Int. J. Med. Sci. 2016, 13, 772–782. [Google Scholar] [CrossRef]
- Brandt, O.; Mildner, M.; Egger, A.E.; Groessl, M.; Rix, U.; Posch, M.; Keppler, B.K.; Strupp, C.; Mueller, B.; Stingl, G. Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomedicine 2012, 8, 478–488. [Google Scholar] [CrossRef]
- Mazumder, J.; Khatoon, N.; Batra, P.; Sardar, M. Biosynthesized silver nanoparticles for orthodontic applications. Adv. Sci. Eng. Med. 2018, 10, 1169–1173. [Google Scholar] [CrossRef]
- Redlich, M.; Katz, A.; Rapoport, L.; Wagner, H.D.; Feldman, Y.; Tenne, R. Improved orthodontic stainless-steel wires coated with inorganic fullerene-like nanoparticles of WS2 impregnated in electroless nickel–phosphorous film. Dent. Mater. 2008, 24, 1640–1646. [Google Scholar] [CrossRef]
- Bapat, A.; Chaubal, V.; Joshi, P.; Bapat, R.; Choudhury, H.; Pandey, M. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 91, 881–898. [Google Scholar] [CrossRef]
- Espinosa, L.; López, N.; Cabada, D.; Reyes, S.; Zaragoza, E.; Constandse, D. Antiadherence and antimicrobial properties of silver nanoparticles against Streptococcus mutans on brackets and wires used for orthodontic treatments. J. Nanomater. 2018, 2018, 9248527. [Google Scholar]
- Amiri, M.; Etemadifar, Z.; Daneshkazemi, A.; Nateghi, M. Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and Candida species. J. Dent. Biomater. 2017, 4, 347–352. [Google Scholar] [PubMed]
- Chun, J.; Shim, E.; Kho, H.; Park, J.; Jung, J.; Kim, M. Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod. 2007, 77, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Degrazia, W.; Leitune, C.; Garcia, M.; Arthur, A.; Samuel, M.; Collares, M. Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. J. Appl. Oral. Sci. 2016, 24, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.; Boegli, L.; James, G.; Velasquillo, C.; Sánchez, R.; Martínez, E. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 360–366. [Google Scholar] [CrossRef]
- Jasso, I.; Velazquez, U.; Scougall, J.; Morales-Luckie, R.A.; Sawada, T.; Yamaguchi, R. Silver nanoparticles in orthodontics, a new alternative in bacterial inhibition: In vitro study. Prog. Orthod. 2020, 21, 1–8. [Google Scholar]
- Song, W.; Ge, S. Application of antimicrobial nanoparticles in dentistry. Molecules 2019, 24, 1033. [Google Scholar] [CrossRef]
- Cunningham, B.; Engstrom, A.; Harper, B.; Harper, S.; Mackiewicz, M. Silver Nanoparticles Stable to Oxidation and Silver Ion Release Show Size-Dependent Toxicity In Vivo. Nanomaterials 2021, 11, 1516. [Google Scholar] [CrossRef]
- Shivaram, A.; Bose, S.; Bandyopadhyay, A. Understanding long-term silver release from surface modified porous titanium implants. Acta Biomater. 2017, 58, 550–560. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef]
- Arango, S.; Peláez, A.; García, C. Coating and Surface Treatments on Orthodontic Metallic Materials. Coatings 2013, 3, 1–15. [Google Scholar] [CrossRef]
- Tripi, T.; Bonaccorso, A.; Condorelli, G. Fabrication of hard coatings on NiTi instruments. J. Endod. 2003, 29, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Makhlouf, A.; Tiginyanu, I. Current and advanced coating technologies for industrial applications. In Nanocoatings and Ultra-Thin Films; Woodhead Publishing: Cambridge, UK, 2011; pp. 3–23. [Google Scholar]
- Pietrantonio, F.; Cannatà, D.; Benetti, M. Biosensor Technologies Based on Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 181–242. [Google Scholar]
- He, L.; Dai, D.; Xie, L.; Chen, Y.; Zhang, C. Biological effects, applications and strategies of nanomodification of dental metal surfaces. Mater. Des. 2021, 207, 109890. [Google Scholar] [CrossRef]
- Sobha, J.D. Electrodeposition: The Versatile Technique for Nanomaterials; Woodhead Publishing: Cambridge, UK, 2012; pp. 86–125. [Google Scholar]
- Meyer, V.; Doll, K.; Stiesch, M.; Schwestka, R.; Demling, A. Comparison of intraoral biofilm reduction on silver-coated and silver ion-implanted stainless steel bracket material: Biofilm reduction on silver ion-implanted bracket material. J. Orofac. Orthop. 2019, 80, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Arash, V.; Keikhaee, F.; Rabiee, S.; Rajabnia, R.; Khafri, S.; Tavanafar, S. Evaluation of Antibacterial Effects of Silver-Coated Stainless Steel Orthodontic Brackets. J. Dent. 2016, 13, 49–54. [Google Scholar]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef]
- Varela, L.; Reyes, E.; Rubio, E. Crecimiento en fluido fisiológico simulado de hidroxiapatita sobre películas de PMMA-sílice-CaO. Superf. Y Vacío. 2011, 24, 92–95. [Google Scholar]
- Barrere, F.; Blitterswijk, C.; Groot, K.; Layrolle, P. Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution. Biomaterials 2002, 23, 1921–1930. [Google Scholar] [CrossRef]
- Barrere, F.; Van, C.; De, K.; Layrolle, P. Nucleation of biomimetic Ca-P coatings on ti6A14V from a SBF x 5 solution: Influence of magnesium. Biomaterials 2002, 23, 2211–2220. [Google Scholar] [CrossRef]
- Khandel, P.; Shahi, K. Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. J. Nanostruct. Chem. 2018, 8, 369–391. [Google Scholar] [CrossRef]
- Vaseghi, Z.; Nematollahzadeh, A.; Tavakoli, O. Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: A review. Rev. Chem. Eng. 2018, 34, 529–559. [Google Scholar] [CrossRef]
- Durán, N.; Seabra, B. Metallic oxide nanoparticles: State of the art in biogenic syntheses and their mechanisms. Appl. Microbiol. Biotechnol. 2012, 95, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Capeness, J.; Echavarri, V.; Horsfall, E. Production of biogenic nanoparticles for the reduction of 4-Nitrophenol and oxidative laccase-like reactions. Front. Microbiol. 2019, 10, 997. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Chandrasekaran, R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020, 18, 23–67. [Google Scholar] [CrossRef]
- Siddiqi, S.; Husen, A.; Rao, K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018, 16, 1–28. [Google Scholar] [CrossRef]
- Grasso, G.; Zane, D.; Dragone, R. Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials 2019, 10, 11. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Besinis, A.; Peralta, T.; Richard, H. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014, 8, 1–16. [Google Scholar] [CrossRef]
- Matos, R.S.; Pinheiro, B.S.; Souza, I.S.; de Castro, R.R.P.; Ramos, G.Q.; Pinto, E.P.; Silva Jr, R.S.; da Fonseca Filho, H.D. 3D micromorphology evaluation of kefir microbial films loaded with extract of Amazon rainforest fruit Cupuaçu. Micron 2021, 142, 10–29. [Google Scholar] [CrossRef]
- Rajendra, P.; Pandit, S.; Filippis, A.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozoya, S.; Rico, R.D.; León, E.A.C.; López Meléndez, C.; Carreño-Gallardo, C.; Madrigal, R.M.A.; Monreal Romero, H.A. Evaluation of the Antimicrobial Effect of Ag Nanoparticles on Nickel–Titanium Archwires in the Presence of Streptococcus mutans Bacteria. Coatings 2024, 14, 1503. https://doi.org/10.3390/coatings14121503
Lozoya S, Rico RD, León EAC, López Meléndez C, Carreño-Gallardo C, Madrigal RMA, Monreal Romero HA. Evaluation of the Antimicrobial Effect of Ag Nanoparticles on Nickel–Titanium Archwires in the Presence of Streptococcus mutans Bacteria. Coatings. 2024; 14(12):1503. https://doi.org/10.3390/coatings14121503
Chicago/Turabian StyleLozoya, Sebastián, Raquel Duarte Rico, Eder Alejandro Carreón León, Claudia López Meléndez, Caleb Carreño-Gallardo, Rosa Margarita Aguilar Madrigal, and Humberto Alejandro Monreal Romero. 2024. "Evaluation of the Antimicrobial Effect of Ag Nanoparticles on Nickel–Titanium Archwires in the Presence of Streptococcus mutans Bacteria" Coatings 14, no. 12: 1503. https://doi.org/10.3390/coatings14121503
APA StyleLozoya, S., Rico, R. D., León, E. A. C., López Meléndez, C., Carreño-Gallardo, C., Madrigal, R. M. A., & Monreal Romero, H. A. (2024). Evaluation of the Antimicrobial Effect of Ag Nanoparticles on Nickel–Titanium Archwires in the Presence of Streptococcus mutans Bacteria. Coatings, 14(12), 1503. https://doi.org/10.3390/coatings14121503