Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells
Abstract
:1. Introduction
2. Experiment
2.1. Preparation of the PANI–SA–GO/CB Composite
2.2. MFC Construction
2.3. Measurement and Characterization
3. Results and Discussion
3.1. Physicochemical Characterization
Electrodes | Reactor Configuration | Power Density (mW/m2) | References |
---|---|---|---|
PANI/WO3/CF | Single | 980 | [42] |
PANI/CNT/GF | Dual | 257 | [43] |
PANI/3D-G | Dual | 768 | [27] |
G/PANI/CC | Dual | 1390 | [9] |
CPHs/CNTs | Dual | 1898 | [44] |
G/PANI/Pt/CC | Dual | 2059 | [19] |
PANI-SA-GO/CB | Dual | 4970 | This work |
3.2. Capacitive Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, B.; Li, J.; Wang, Z.; Ali, J.; Wang, L.; Zhang, Z.; Liu, F.; Glebov, E.M.; Zhang, J.; Zhang, H. N-doped Fe Nanoparticles Anchored on 3D Carbonized Sugarcane Anode for High Power Density and Efficient Chromium(VI) Removal. J. Environ. Chem. Eng. 2022, 10, 108751. [Google Scholar] [CrossRef]
- Sun, X.; Wu, X.; Shi, Z.; Li, X.; Qian, S.; Ma, Y.; Sun, W.; Guo, C.; Li, C.M. Electrospinning Iron-Doped Carbon Fiber to Simultaneously Boost Both Mediating and Direct Biocatalysis for High-Performance Microbial Fuel Cell. J. Power Sources 2022, 530, 231277. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Zhang, Y.; Guo, Q.; Hu, T.; Xiao, H.; Lu, W.; Jia, J. Progress on Anodic Modification Materials and Future Development Directions in Microbial Fuel Cells. J. Power Sources 2023, 556, 232486. [Google Scholar] [CrossRef]
- Khilari, S.; Pandit, S.; Varanasi, J.L.; Das, D.; Pradhan, D. Bifunctional Manganese Ferrite/Polyaniline Hybrid as Electrode Material for Enhanced Energy Recovery in Microbial Fuel Cell. ACS Appl. Mater. Inter. 2015, 7, 20657–20666. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhao, Y.; Doherty, L.; Hu, Y.; Hao, X. The Integrated Processes for Wastewater Treatment Based on the Principle of Microbial Fuel Cells: A Review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 60–91. [Google Scholar] [CrossRef]
- Li, P.; Yang, Y.; Shi, E.; Shen, Q.; Shang, Y.; Wu, S.; Wei, J.; Wang, K.; Zhu, H.; Yuan, Q.; et al. Core-Double-Shell, Carbon Nanotube@ Polypyrrole@MnO2 Sponge as Freestanding, Compressible Supercapacitor Electrode. ACS Appl. Mater. Inter. 2014, 6, 5228–5234. [Google Scholar] [CrossRef]
- Luo, J.; Ma, Q.; Gu, H.; Zheng, Y.; Liu, X. Three-Dimensional Graphene-Polyaniline Hybrid Hollow Spheres by Layer-By-Layer Assembly for Application in Supercapacitor. Electrochim. Acta 2015, 173, 184–192. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, C.; Bao, S.; Bao, Q. Carbon Nanotube/Polyaniline Composite as Anode Material for Microbial Fuel Cells. J. Power Sources 2007, 170, 79–84. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Z.; Zhang, P. A New Method for Fabrication of Graphene/Polyaniline Nanocomplex Modified Microbial Fuel Cell Anodes. J. Power Sources 2013, 224, 139–144. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Wen, Q. Microbial Fuel Cells: Enhancement with a Polyaniline/Carbon Felt Capacitive Bioanode and Reduction of Cr (VI) Using the Intermittent Operation. Environ. Chem. Lett. 2018, 16, 319–326. [Google Scholar] [CrossRef]
- Lai, B.; Tang, X.; Li, H.; Du, Z.; Liu, X.; Zhang, Q. Power Production Enhancement with a Polyaniline Modified Anode in Microbial Fuel Cells. Biosens. Bioelectron. 2011, 28, 373–377. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Du, Z. Polyaniline Synthesis by Cyclic Voltammetry for Anodic Modification in Microbial Fuel Cells. Int. J. Electrochem. Sci. 2014, 9, 2038–2046. [Google Scholar]
- Hou, J.; Liu, Z.; Li, Y. Polyaniline Modified Stainless Steel Fiber Felt for Highperformance Microbial Fuel Cell Anodes. J. Clean. Energy Technol. 2015, 3, 165–169. [Google Scholar] [CrossRef]
- Qi, R.; Guo, J.; Liu, Y.; Zhang, R.; Gan, Z. Effects of Salt Content on Secondary Structure of Protein in Sodium Alginate/Antarctic Krill Protein Composite System and Characterization of Fiber Properties. Dyes Pigment. 2019, 171, 107686. [Google Scholar] [CrossRef]
- Huang, H.B.; Zeng, X.P.; Li, W.; Wang, H.; Wang, Q.; Yang, Y. Reinforced Conducting Hydrogels Prepared from the in-Situ Polymerization of Aniline in an Aqueous Solution of Sodium Alginate. J. Mater. Chem. A 2014, 2, 16516–16522. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Xu, Q.; Zhang, Q.; Chen, D. Facile Preparation and Enhanced Capacitance of the Polyaniline/Sodium Alginate Nanofiber Network for Supercapacitors. Langmuir 2011, 27, 6458–6463. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, H.; Lin, C.; Zheng, J.; Chen, Y.; Wen, Q.; Wang, S.; Xu, H.; Qi, L. Development of a 3D Porous Sponge as a Bioanode Coated with Polyaniline/Sodium Alginate/Nitrogen-Doped Carbon Nanotube Composites for High-Performance Microbial Fuel Cells. J. Appl. Electrochem. 2020, 50, 621–630. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Q.; Chen, Y.; Zheng, H.; Wang, S. Enhanced Performance of Microbial Fuel Cell with Polyaniline/Sodium Alginate/Carbon Brush Hydrogel Bioanode and Removal of COD. Energy 2020, 202, 117780. [Google Scholar] [CrossRef]
- Gnana Kumar, G.; Kirubaharan, C.J.; Udhayakumar, S.; Karthikeyan, C.; Nahm, K.S. Conductive Polymer/Graphene Supported Platinum Nanoparticles as Anode Catalysts for the Extended Power generation of Microbial Fuel Cells. Ind. Eng. Chem. Res. 2014, 53, 16883–16893. [Google Scholar] [CrossRef]
- Qiao, Y.; Bao, S.; Li, C.M.; Cui, X.; Lu, Z.; Guo, J. Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells. ACS Nano 2008, 2, 113–119. [Google Scholar] [CrossRef]
- Du, P.; Liu, H.C.; Yi, C.; Wang, K.; Gong, X. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors. ACS Appl. Mater. Inter. 2015, 7, 23932–23940. [Google Scholar] [CrossRef] [PubMed]
- Ayán-Varela, M.; Villar-Rodil, S.; Paredes, J.I.; Munuera, J.M.; Pagán, A.; Lozano-Pérez, A.A.; Cenis, J.L.; Martínez-Alonso, A.; Tascón, J.M.D. Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride. ACS Appl. Mater. Inter. 2015, 7, 24032–24045. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, C.; Seo, Y.D.; Cho, S.; Kim, J.; Lee, G.; Kim, Y.K.; Jang, J. Fabrication of Various Conducting Polymers Using Graphene Oxide as a Chemical Oxidant. Chem. Mater. 2015, 27, 6238–6248. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Cheng, C.; Liu, X.; Jiang, H.; Wang, X. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles. ACS Appl. Mater. Inter. 2015, 7, 18441–18449. [Google Scholar] [CrossRef]
- Seenivasan, R.; Chang, W.; Gunasekaran, S. Highly Sensitive Detection and Removal of Lead Ions in Water Using Cysteine-Functionalized Graphene Oxide/Polypyrrole Nanocomposite Film Electrode. ACS Appl. Mater. Inter. 2015, 7, 15935–15943. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, Y.; Wei, H.; Li, F.; Hu, Y.; Wei, C.; Feng, C. One-Step Electrosynthesis of Polypyrrole/Graphene Oxide Composites for Microbial Fuel Cell Application. Electrochim. Acta 2013, 111, 366–373. [Google Scholar] [CrossRef]
- Yong, Y.-C.; Dong, X.-C.; Chan-Park, M.B.; Song, H.; Chen, P. Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACS Nano 2012, 6, 2394–2400. [Google Scholar] [CrossRef]
- Kopecek, J. Swell Gels. Nature 2002, 417, 388–391. [Google Scholar] [CrossRef]
- Green, R.A.; Baek, S.; Poole-Warren, L.A.; Martens, P.J. Conducting Polymer-Hydrogels for Medical Electrode Applications. Sci. Technol. Adv. Mater. 2010, 11, 14107. [Google Scholar] [CrossRef]
- Mano, N.; Yoo, J.E.; Tarver, J.; Loo, Y.; Heller, A. An Electron-Conducting Cross-Linked Polyaniline-Based Redox Hydrogel, Formed in One Step at pH 7.2, Wires Glucose Oxidase. J. Am. Chem. Soc. 2007, 129, 7006–7007. [Google Scholar] [CrossRef]
- Heller, A. Electron-Conducting Redox Hydrogels: Design, Characteristics and Synthesis. Curr. Opin. Chem. Biol. 2006, 10, 664–672. [Google Scholar]
- Liu, X.-W.; Huang, Y.-X.; Sun, X.-F.; Sheng, G.-P.; Zhao, F.; Wang, S.-G.; Yu, H.-Q. Conductive Carbon Nanotube Hydrogel as a Bioanode for Enhanced Microbial Electrocatalysis. ACS Appl. Mater. Interfaces. 2014, 6, 8158–8164. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M.; Mashkour, M. Bacterial Cellulose-Polyaniline Nano-Biocomposite: A Porous Media Hydrogel Bioanode Enhancing the Performance of Microbial Fuel Cell. J. Power Sources 2016, 325, 322–328. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M.; Mashkour, M.; Bakeri, G.; Luque, R.; Oh, S. Application of Wet Nanostructured Bacterial Cellulose as a Novel Hydrogel Bioanode for Microbial Fuel Cells. ChemElectroChem 2017, 4, 648–654. [Google Scholar] [CrossRef]
- Qi, L.; Wu, J.; Chen, Y.; Wen, Q.; Xu, H.; Wang, Y. Shape-Controllable Binderless Self-Supporting Hydrogel Anode for Microbial Fuel Cells. Renew. Energ. 2020, 156, 1325–1335. [Google Scholar] [CrossRef]
- Yang, C.; Chen, C.; Pan, Y.; Li, S.; Wang, F.; Li, J.; Li, N.; Li, X.; Zhang, Y.; Li, D. Flexible Highly Specific Capacitance Aerogel Electrodes Based on Cellulose Nanofibers, Carbon Nanotubes and Polyaniline. Electrochim. Acta 2015, 182, 264–271. [Google Scholar] [CrossRef]
- Ma, L.; Liu, R.; Niu, H.; Xing, L.; Liu, L.; Huang, Y. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. ACS Appl. Mater. Interfaces 2016, 8, 33608–33618. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, B.; Pan, L.; Yu, G. 3D Nanostructured Conductive Polymer Hydrogels for High-Performance Electrochemical Devices. Energy Environ. Sci. 2013, 6, 2856–2870. [Google Scholar] [CrossRef]
- Nakamura, R.; Ishii, K.; Hashimoto, K. Electronic Absorption Spectra and Redox Properties of C Type Cytochromes in Living Microbes. Angew. Chem. Int. Ed. 2009, 48, 1606–1608. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, P.; Jiang, Y.; Huang, X. Enhanced Power Generation of Microbial Fuel Cell Using Manganese Dioxide-Coated Anode in Flow-Through Mode. J. Power Sources 2015, 273, 580–583. [Google Scholar] [CrossRef]
- Lv, Z.; Xie, D.; Li, F.; Hu, Y.; Wei, C.; Feng, C. Microbial Fuel Cell as a Biocapacitor by Using Pseudo-Capacitive Anode Materials. J. Power Sources 2014, 246, 642–649. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zeng, L.; Cui, D.; Xiang, X.; Li, W. Polyaniline/Mesoporous Tungsten Trioxide Composite as Anode Electrocatalyst for High-Performance Microbial Fuel Cells. Biosens. Bioelectron. 2013, 41, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.-F.; Du, L.; Guo, P.-B.; Zhu, B.; Luong, J.H. Controlled Modification of Carbon Nanotubes and Polyaniline on Macroporous Graphite Felt for High-Performance Microbial Fuel Cell Anode. J. Power Sources 2015, 283, 46–53. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Du, Z.; Wang, W.; Ng, H.Y. Conductive Polypyrrole Hydrogels and Carbon Nanotubes Composite as an Anode for Microbial Fuel Cells. RSC Adv. 2015, 5, 50968–50974. [Google Scholar] [CrossRef]
- Deeke, A.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N. Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells. Environ. Sci. Technol. 2012, 46, 3554–3560. [Google Scholar] [CrossRef]
- Deeke, A.; Sleutels, T.H.; Heijne, A.; Hamelers, H.V.; Buisman, C.J. Influence of the Thickness of the Capacitive Layer on the Performance of Bioanodes in Microbial Fuel Cells. J. Power Sources 2013, 243, 611–616. [Google Scholar] [CrossRef]
- Tang, J.; Yuan, Y.; Liu, T.; Zhou, S. High-Capacity Carbon-Coated Titanium Dioxide Core–Shell Nanoparticles Modified Three Dimensional Anodes for Improved Energy Output in Microbial Fuel Cells. J. Power Sources 2015, 274, 170–176. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, C.; Jiang, Y.; Bian, Y.; Zhang, H.; Sun, X.; Yang, X.; Zhang, X.; Huang, X. Performance Enhancement of Microbial Fuel Cell by Applying Transient-State Regulation. Appl. Energy 2017, 185, 582. [Google Scholar] [CrossRef]
Electrodes | Parameters | C5 min/D30 min | C30 min/D60 min | C60 min/D90 min |
---|---|---|---|---|
ih (A/m2) | 0.98 | 2.29 | 2.45 | |
CF | is (A/m2) | 0.46 | 0.55 | 0.58 |
Qs (C/m2) | 87.07 | 308.94 | 423.05 | |
Qm (C/m2) | 887.47 | 2255.94 | 3520.25 | |
PANI-SA-GO/CB | ih (A/m2) | 12.99 | 21.18 | 33.03 |
is (A/m2) | 5.07 | 5.11 | 5.12 | |
Qs (C/m2) | 868.56 | 3397.96 | 6378.41 | |
Qm (C/m2) | 9694.53 | 21,487.71 | 33,756.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, H.; Wang, J.; Dong, J.; Duan, Y. Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells. Coatings 2023, 13, 790. https://doi.org/10.3390/coatings13040790
Wang Y, Yang H, Wang J, Dong J, Duan Y. Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells. Coatings. 2023; 13(4):790. https://doi.org/10.3390/coatings13040790
Chicago/Turabian StyleWang, Yuyang, Huan Yang, Jing Wang, Jing Dong, and Ying Duan. 2023. "Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells" Coatings 13, no. 4: 790. https://doi.org/10.3390/coatings13040790
APA StyleWang, Y., Yang, H., Wang, J., Dong, J., & Duan, Y. (2023). Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells. Coatings, 13(4), 790. https://doi.org/10.3390/coatings13040790