The Effect of Sintering Temperature on Vickers Microhardness and Flexural Strength of Translucent Multi-Layered Zirconia Dental Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Vickers Microhardness
2.3. Three-Point Flexural Strength
2.4. Fractogprahic Analysis
2.5. Statistical Analysis
3. Results
3.1. Vickers Microhardness
3.2. Three-Point Flexural Srength
3.3. Fractogprahic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denry, I.; Kelly, J.R. Emerging Ceramic-Based Materials for Dentistry. J. Dent. Res. 2014, 93, 1235–1242. [Google Scholar] [CrossRef] [Green Version]
- Denry, I.; Kelly, J.R. State of the Art of Zirconia for Dental Applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Reveron, H.; Spies, B.C.; Van Meerbeek, B.; Chevalier, J. Trade-off between Fracture Resistance and Translucency of Zirconia and Lithium-Disilicate Glass Ceramics for Monolithic Restorations. Acta Biomater. 2019, 91, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou-Kyrana, A.; Kokoti, M.; Kontonasaki, E.; Koidis, P. Evaluation of Color Stability of Preshaded and Liquid-Shaded Monolithic Zirconia. J. Prosthet. Dent. 2018, 119, 467–472. [Google Scholar] [CrossRef]
- Kolakarnprasert, N.; Kaizer, M.R.; Kim, D.K.; Zhang, Y. New Multi-Layered Zirconias: Composition, Microstructure and Translucency. Dent. Mater. 2019, 35, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Elsaka, S.E. Optical and Mechanical Properties of Newly Developed Monolithic Multilayer Zirconia. J. Prosthodont. 2019, 28, e279–e284. [Google Scholar] [CrossRef] [Green Version]
- Michailova, M.; Elsayed, A.; Fabel, G.; Edelhoff, D.; Zylla, I.-M.; Stawarczyk, B. Comparison between Novel Strength-Gradient and Color-Gradient Multilayered Zirconia Using Conventional and High-Speed Sintering. J. Mech. Behav. Biomed. Mater. 2020, 111, 103977. [Google Scholar] [CrossRef]
- Ramesh, S.; Purbolaksono, J.; Hamdi, M.; Sopyan, I.; Tolouei, R.; Amiriyan, M.; Tarlochan, F.; Teng, W.D. Low-Temperature Degradation (LTD) Behaviour of CuO-Doped Tetragonal Zirconia Ceramic. Ceram.-Silikáty 2012, 56, 15–19. [Google Scholar]
- Ramesh, S.; Amiriyan, M.; Meenaloshini, S.; Tolouei, R.; Hamdi, M.; Pruboloksono, J.; Teng, W.D. Densification Behaviour and Properties of Manganese Oxide Doped Y-TZP Ceramics. Ceram. Int. 2011, 37, 3583–3590. [Google Scholar] [CrossRef]
- Catramby, M.F.; do Vale, A.L.; Dos Santos, H.E.S.; Elias, C.N. Effect of Sintering Process on Microstructure, 4-Point Flexural Strength, and Grain Size of Yttria-Stabilized Tetragonal Zirconia Polycrystal for Use in Monolithic Dental Restorations. J. Prosthet. Dent. 2021, 125, 824.e1–824.e8. [Google Scholar] [CrossRef]
- Grambow, J.; Wille, S.; Kern, M. Impact of Changes in Sintering Temperatures on Characteristics of 4YSZ and 5YSZ. J. Mech. Behav. Biomed. Mater. 2021, 120, 104586. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Özcan, M.; Hallmann, L.; Ender, A.; Mehl, A.; Hämmerlet, C.H.F. The Effect of Zirconia Sintering Temperature on Flexural Strength, Grain Size, and Contrast Ratio. Clin. Oral Investig. 2013, 17, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vult von Steyern, P.; Bruzell, E.; Vos, L.; Andersen, F.S.; Ruud, A. Sintering Temperature Accuracy and Its Effect on Translucent Yttria-Stabilized Zirconia: Flexural Strength, Crystal Structure, Tetragonality and Light Transmission. Dent. Mater. 2022, 38, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, K.V.; Adabo, G.L.; Mariscal-Muñoz, E.; Antonio, S.G.; Arioli Filho, J.N. Effect of Sintering Temperature on Microstructure, Flexural Strength, and Optical Properties of a Fully Stabilized Monolithic Zirconia. J. Prosthet. Dent. 2020, 124, 594–598. [Google Scholar] [CrossRef]
- Ebeid, K.; Wille, S.; Hamdy, A.; Salah, T.; El-Etreby, A.; Kern, M. Effect of Changes in Sintering Parameters on Monolithic Translucent Zirconia. Dent. Mater. 2014, 30, e419–e424. [Google Scholar] [CrossRef]
- Sanal, F.A.; Kilinc, H. Effect of Shade and Sintering Temperature on the Translucency Parameter of a Novel Multi-Layered Monolithic Zirconia in Different Thicknesses. J. Esthet. Restor. Dent. 2020, 32, 607–614. [Google Scholar] [CrossRef]
- Al-Surkhi, O.; Hamad, Z. Influence of Firing Temperature and Duration on the Hardness of Dental Zirconia for Optimum Selection of Sintering Conditions. J. Appl. Biomater. Funct. Mater. 2022, 20, 22808000221114216. [Google Scholar] [CrossRef]
- Kaizer, M.R.; Gierthmuehlen, P.C.; Dos Santos, M.B.; Cava, S.S.; Zhang, Y. Speed Sintering Translucent Zirconia for Chairside One-Visit Dental Restorations: Optical, Mechanical, and Wear Characteristics. Ceram. Int. 2017, 43, 10999–11005. [Google Scholar] [CrossRef]
- Čokić, S.; Vleugels, J.; Meerbeek, B.; Camargo dos Santos, B.; Willlems, E.; Li, M.; Zhang, F. Mechanical Properties, Aging Stability and Translucency of Speed-Sintered Zirconia for Chairside Restorations. Dent. Mater. 2020, 36, 959–972. [Google Scholar] [CrossRef]
- Öztürk, C.; Can, G. Effect of Sintering Parameters on the Mechanical Properties of Monolithic Zirconia. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019, 13, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Juntavee, N.; Attashu, S. Effect of Different Sintering Process on Flexural Strength of Translucency Monolithic Zirconia. J. Clin. Exp. Dent. 2018, 10, e821–e830. [Google Scholar] [CrossRef] [PubMed]
- ASTM Standard C1327; Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics. ASTM International: West Conshohocken, PA, USA, 2015.
- ISO 6872; Organizacion Internacional de Normalizacion International Standard. Dentistry-Ceramic Materials; ISO: Geneva, Switzerland, 2008.
- Quinn, G.D.; Quinn, G.D. Fractography of Ceramics and Glasses; National Institute of Standards and Technology: Washington, DC, USA, 2007; Volume 960.
- Jerman, E.; Lümkemann, N.; Eichberger, M.; Zoller, C.; Nothelfer, S.; Kienle, A.; Stawarczyk, B. Evaluation of Translucency, Marten’s Hardness, Biaxial Flexural Strength and Fracture Toughness of 3Y-TZP, 4Y-TZP and 5Y-TZP Materials. Dent. Mater. 2021, 37, 212–222. [Google Scholar] [CrossRef]
- Amat, N.F.; Muchtar, A.; Amril, M.S.; Ghazali, M.J.; Yahaya, N. Effect of Sintering Temperature on the Aging Resistance and Mechanical Properties of Monolithic Zirconia. J. Mater. Res. Technol. 2019, 8, 1092–1101. [Google Scholar] [CrossRef]
- Kwon, W.-C.; Park, M.-G. Evaluation of Mechanical Properties of Dental Zirconia in Different Milling Conditions and Sintering Temperatures. J. Prosthet. Dent. 2022, in press. [Google Scholar] [CrossRef]
- Toma, F.R.; Bîrdeanu, M.I.; Uțu, I.-D.; Vasiliu, R.D.; Moleriu, L.C.; Porojan, L. Surface Characteristics of High Translucent Multilayered Dental Zirconia Related to Aging. Materials 2022, 15, 3606. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Shahramian, K.; Lassila, L. Effect of Different Treatments on the Flexural Strength of Fully versus Partially Stabilized Monolithic Zirconia. J. Prosthet. Dent. 2017, 118, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Sen, N.; Isler, S. Microstructural, Physical, and Optical Characterization of High-Translucency Zirconia Ceramics. J. Prosthet. Dent. 2020, 123, 761–768. [Google Scholar] [CrossRef]
- Guazzato, M.; Albakry, M.; Ringer, S.P.; Swain, M.V. Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials. Part II. Zirconia-Based Dental Ceramics. Dent. Mater. 2004, 20, 449–456. [Google Scholar] [CrossRef]
- Klimke, J.; Trunec, M.; Krell, A. Transparent Tetragonal Yttria-Stabilized Zirconia Ceramics: Influence of Scattering Caused by Birefringence. J. Am. Ceram. Soc. 2011, 94, 1850–1858. [Google Scholar] [CrossRef]
- Zhang, Y. Making Yttria-Stabilized Tetragonal Zirconia Translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Liao, Y.; Wan, Q.; Li, W. Effects of Sintering Temperature and Particle Size on the Translucency of Zirconium Dioxide Dental Ceramic. J. Mater. Sci. Mater. Med. 2011, 22, 2429–2435. [Google Scholar] [CrossRef]
- Xue, M.; Liu, S.; Wang, X.; Jiang, K. High Fracture Toughness of 3Y-TZP Ceramic over a Wide Sintering Range. Mater. Chem. Phys. 2020, 244, 122693. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Emslander, A.; Roos, M.; Sener, B.; Noack, F.; Keul, C. Zirconia Ceramics, Their Contrast Ratio and Grain Size Depending on Sintering Parameters. Dent. Mater. J. 2014, 33, 591–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulyk, V.; Duriagina, Z.; Kostryzhev, A.; Vasyliv, B.; Vavrukh, V.; Marenych, O. The Effect of Yttria Content on Microstructure, Strength, and Fracture Behavior of Yttria-Stabilized Zirconia. Materials 2022, 15, 5212. [Google Scholar] [CrossRef]
- Kulyk, V.; Duriagina, Z.; Vasyliv, B.; Vavrukh, V.; Kovbasiuk, T.; Lyutyy, P.; Vira, V. The Effect of Sintering Temperature on the Phase Composition, Microstructure, and Mechanical Properties of Yttria-Stabilized Zirconia. Materials 2022, 15, 2707. [Google Scholar] [CrossRef] [PubMed]
Material Class | Type | Shade | Name | Manufacturer | Size | Chemical Composition (wt.%) |
---|---|---|---|---|---|---|
5Y-TZP | Multi-layered, Color gradient | A2 | DD cubeX2 ML | Dental Direkt, Spenge, Germany | 98.5 mm × 14 mm | ZrO2 + HfO2 + Y2O3 ≥ 99.0 Y2O3 < 10 Al2O3 ≤ 0.01 Other oxides < 1 |
4Y-TZP | Multi-layered, Color gradient | A2 | DD cube ONE ML | Dental Direkt, Spenge, Germany | 98.5 mm × 14 mm | ZrO2 + HfO2 + Y2O3 ≥ 99.0 Y2O3 < 8 Al2O3 ≤ 0.15 Other oxides < 1 |
Measurement | Sintering Temperature (°C) | Zirconia Material | Mean ± SD |
---|---|---|---|
Microhardness (kg/mm2) | 1300 °C | 4Y | 1306.57 ± 17.93 a |
5Y | 1269.48 ± 15.95 b | ||
1450 °C | 4Y | 1468.87 ± 35.11 a | |
5Y | 1399.59 ± 30.55 b | ||
1600 °C | 4Y | 1398.92 ± 28.64 a | |
5Y | 1354.86 ± 44.0 b | ||
Flexural strength (MPa) | 1300 °C | 4Y | 758.66 ± 13.21 a |
5Y | 372.28 ± 12.43 b | ||
1450 °C | 4Y | 1390.55 ± 28.61 a | |
5Y | 669.58 ± 22 b | ||
1600 °C | 4Y | 1157.48 ± 17.82 a | |
5Y | 500.97 ± 26.26 b |
Measurement | Sintering Temperature (°C) | Mean ± SD | p-Value |
---|---|---|---|
Microhardness (kg/mm2) | 1300 °C | 1288.02 ± 25.17 a | 0.000 |
1450 °C | 1434.23 ± 47.81 b | ||
1600 °C | 1376.89 ± 42.83 c | ||
Flexural strength (MPa) | 1300 °C | 565.47 ± 12.82 a | 0.000 |
1450 °C | 1030.07 ± 25.3 b | ||
1600 °C | 829.22 ± 22.04 c |
Measure-ment | Zirconia Material | Layer | Mean ±SD at Different Layers and Sintering Temperatures (°C) | |||||
---|---|---|---|---|---|---|---|---|
1300 °C | p-Value | 1450 °C | p-Value | 1600 °C | p-Value | |||
Microhar-dness (kg/mm2) | 4Y | 1st Layer | 1308.61 ± 23.49 a | 0.727 | 1464.54 ± 44.41 a | 0.917 | 1419.35 ± 25.12 a | 0.227 |
2nd Layer | 1309.59 ± 15.5 a | 1463.19 ± 44.93 a | 1384.73 ± 11.37 a | |||||
3rd Layer | 1310.75 ± 19.74 a | 1480.04 ± 30.77 a | 1386.97 ± 35.26 a | |||||
4th Layer | 1297.31 ± 16.45 a | 1467.70 ± 31.44 a | 1404.62 ± 32.21 a | |||||
5Y | 1st Layer | 1270.30 ± 16.85 a | 0.133 | 1407.40 ± 16.51 a | 0.661 | 1360.14 ± 30.44 a | 0.978 | |
2nd Layer | 1285.0 ± 12.28 a | 1410.35 ± 33.3 a | 1354.57 ± 36.56 a | |||||
3rd Layer | 1262.14 ± 13.13 a | 1404.92 ± 19.48 a | 1360.50 ± 51.73 a | |||||
4th Layer | 1260.5 ± 12.81 a | 1375.70 ± 43.26 a | 1344.23 ± 34.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfahed, B.; Alayad, A. The Effect of Sintering Temperature on Vickers Microhardness and Flexural Strength of Translucent Multi-Layered Zirconia Dental Materials. Coatings 2023, 13, 688. https://doi.org/10.3390/coatings13040688
Alfahed B, Alayad A. The Effect of Sintering Temperature on Vickers Microhardness and Flexural Strength of Translucent Multi-Layered Zirconia Dental Materials. Coatings. 2023; 13(4):688. https://doi.org/10.3390/coatings13040688
Chicago/Turabian StyleAlfahed, Bashayer, and Abdullah Alayad. 2023. "The Effect of Sintering Temperature on Vickers Microhardness and Flexural Strength of Translucent Multi-Layered Zirconia Dental Materials" Coatings 13, no. 4: 688. https://doi.org/10.3390/coatings13040688
APA StyleAlfahed, B., & Alayad, A. (2023). The Effect of Sintering Temperature on Vickers Microhardness and Flexural Strength of Translucent Multi-Layered Zirconia Dental Materials. Coatings, 13(4), 688. https://doi.org/10.3390/coatings13040688