Structure, Electrochemical, and Transport Properties of Li- and F-Modified P2-Na2/3Ni1/3Mn2/3O2 Cathode Materials for Na-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials Synthesis
2.2. Structure and Composition Characterization
2.3. Electrochemical Testing
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 118, 1800561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.Y.; Myung, S.T.; Sun, Y.K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [Green Version]
- Chayambuka, K.; Mulder, G.; Danilov, D.L.; Notten, P.H.L. Sodium-Ion Battery Materials and Electrochemical Properties Reviewed. Adv. Energy Mater. 2018, 8, 1800079. [Google Scholar] [CrossRef]
- Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J. Toward Emerging Sodium-Based Energy Storage Technologies: From Performance to Sustainability. Adv. Energy Mater. 2022, 12, 2201692. [Google Scholar] [CrossRef]
- Su, H.; Jaffer, S.; Yu, H. Transition metal oxides for sodium-ion batteries. Energy Storage Mater. 2016, 5, 116–131. [Google Scholar] [CrossRef]
- Xiao, J.; Li, X.; Tang, K.; Wang, D.; Long, M.; Gao, H.; Chen, W.; Liu, C.; Liu, H.; Wang, G. Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 2021, 5, 3735–3764. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Chen, M.; Zou, C.; Jin, H.; Wang, S.; Chou, S.L.; Dou, S.X. Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries. Small 2019, 15, 1805381. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, C.; Wang, N.; Zhang, Q. Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: Status, challenges and countermeasures. J. Mater. Chem. A 2019, 7, 10138–10158. [Google Scholar] [CrossRef]
- Xiao, Y.; Abbasi, N.M.; Zhu, Y.F.; Li, S.; Tan, S.J.; Ling, W.; Peng, L.; Yang, T.; Wang, L.; Guo, X.D.; et al. Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium-Ion Batteries. Adv. Funct. Mater. 2020, 30, 2001334. [Google Scholar] [CrossRef]
- Gabriel, E.; Hou, D.; Lee, E.; Xiong, H. Multiphase layered transition metal oxide positive electrodes for sodium ion batteries. Energy Sci. Eng. 2022, 10, 1672–1705. [Google Scholar] [CrossRef]
- Peng, B.; Sun, Z.; Zhao, L.; Li, J.; Zhang, G. Dual-Manipulation on P2-Na0.67Ni0.33Mn0.67O2 Layered Cathode toward Sodium-Ion Full Cell with Record Operating Voltage Beyond 3.5 V. Energy Storage Mater. 2021, 35, 620–629. [Google Scholar] [CrossRef]
- Li, W.; Yao, Z.; Zhang, S.; Wang, X.; Xia, X.; Gu, C.; Tu, J. Exploring the Stability Effect of the Co-Substituted P2-Na0.67[Mn0.67Ni0.33]O2 Cathode for Liquid- and Solid-State Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 41477–41484. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Guo, S.; Zhou, H. Advanced cobalt-free cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2021, 50, 13189–13235. [Google Scholar] [CrossRef]
- Lu, Z.; Dahn, J.R. In Situ X-Ray Diffraction Study of P2-Na2/3Ni1/3Mn2/3O2. J. Electrochem. Soc. 2001, 148, A1225. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Chen, M.; Zou, C.; Jin, H.; Wang, S.; Gu, Q.; Chou, S. P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J. Mater. Chem. A 2019, 7, 9215–9221. [Google Scholar] [CrossRef]
- Lee, D.H.; Xu, J.; Meng, Y.S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 2013, 15, 3304–3312. [Google Scholar] [CrossRef]
- Clément, R.J.; Xu, J.; Middlemiss, D.S.; Alvarado, J.; Ma, C.; Meng, Y.S.; Grey, C.P. Direct evidence for high Na+ mobility and high voltage structural processes in P2-Nax[LiyNizMn1−y−z]O2 (x, y, z ≤ 1) cathodes from solid-state NMR and DFT calculations. J. Mater. Chem. A 2017, 5, 4129–4143. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Sathiya, M.; Mendoza-Sánchez, B.; Iadecola, A.; Vergnet, J.; Dedryvère, R.; Saubanère, M.; Abakumov, A.M.; Rozier, P.; Tarascon, J.-M. Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23). Adv. Energy Mater. 2018, 8, 1802379. [Google Scholar]
- Chen, Y.; Su, G.; Cheng, X.; Du, T.; Han, Y.; Qiang, W.; Huang, B. Electrochemical performances of P2-Na2/3Ni1/3Mn2/3O2 doped with Li and Mg for high cycle stability. J. Alloys Compd. 2021, 858, 157717. [Google Scholar] [CrossRef]
- Shi, Q.; Qi, R.; Feng, X.; Wang, J.; Li, Y.; Yao, Z.; Wang, X.; Li, Q.; Lu, X.; Zhang, J.; et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nat. Commun. 2022, 13, 3205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, M.; Ma, J.; Wei, G.; Ling, Y.; Zhang, R.; Huang, Y. Revisiting the Na2/3Ni1/3Mn2/3O2 Cathode: Oxygen Redox Chemistry and Oxygen Release Suppression. ACS Cent. Sci. 2020, 6, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Dang, R.; Chen, M.; Li, Q.; Wu, K.; Lee, Y.L.; Hu, Z.; Xiao, X. Na+-Conductive Na2Ti3O7-Modified P2-type Na2/3Ni1/3Mn2/3O2 via a Smart in Situ Coating Approach: Suppressing Na+/Vacancy Ordering and P2-O2 Phase Transition. ACS Appl. Mater. Interfaces 2019, 11, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Zhai, J.; Chen, G.; Qiu, X.; Fang, H.; Zhang, T.; Huang, Z.; Zhao, W.; Wang, Z.; Chu, M.; et al. Surface Engineering Suppresses the Failure of Biphasic Sodium Layered Cathode for High Performance Sodium-Ion Batteries. Adv. Funct. Mater. 2021, 32, 2109319. [Google Scholar] [CrossRef]
- Li, H.; Wang, T.; Wang, X.; Li, G.; Du, Y.; Shen, J.; Chai, J. Sodium superionic conductor NaTi2(PO4)3 surface layer modified P2-type Na2/3Ni1/3Mn2/3O2 as high-performance cathode for sodium-ion batteries. J. Power Sources 2021, 494, 229771. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X.; Zhang, A.; Shen, C.; Liu, Q.; Enaya, H.A.; Zhou, C. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy 2016, 27, 27–34. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Q.; Zhao, X.; Zhang, J.; Liu, X.; Wang, T.; Zhang, N.; Jiao, L.; Chen, J.; Fan, L.Z. Hierarchical Engineering of Porous P2-Na2/3Ni1/3Mn2/3O2 Nanofibers Assembled by Nanoparticles Enables Superior Sodium-Ion Storage Cathodes. Adv. Funct. Mater. 2019, 30, 1907837. [Google Scholar] [CrossRef]
- Wang, P.-F.; Yao, H.-R.; Liu, X.-Y.; Yin, Y.-X.; Zhang, J.-N.; Wen, Y.; Yu, X.; Gu, L.; Guo, Y.-G. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 2018, 4, eaar6018. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Liu, X.; Chen, X.; Lee, G.H.; Song, M.; Yang, X.; Omenya, F.; Reed, D.M.; Sprenkle, V.; Ren, Y.; et al. Uncommon Behavior of Li Doping Suppresses Oxygen Redox in P2-Type Manganese-Rich Sodium Cathodes. Adv. Mater. 2021, 33, 2107141. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Wang, W.; Wang, S.; Li, B. Comprehensive Review of P2-Type Na2/3Ni1/3Mn2/3O2, a Potential Cathode for Practical Application of Na-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 22051–22066. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tan, S.; Moon, J.; Jafta, C.J.; Li, C.; Kobayashi, T.; Lyu, H.; Bridges, C.A.; Men, S.; Guo, W.; et al. Insights into the Enhanced Cycle and Rate Performances of the F− Substituted P2-Type Oxide Cathodes for Sodium-Ion Batteries. Adv. Energy Mater. 2020, 10, 2000135. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Z.; Zhong, Y.; Chen, T.; Liu, X.; Qu, J.; Xiang, W.; Li, J.; Chen, X.; Guo, X.; et al. Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2-xFx cathode. Electrochim. Acta 2019, 308, 64–73. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, J.; Che, Z.; Quan, Z.; Duan, J.; Wu, X.; Weng, J.; Zhao, J.; Zhou, J. Insights into the enhanced structure stability and electrochemical performance of Ti4+/F− co-doped P2-Na0.67Ni0.33Mn0.67O2 cathodes for sodium ion batteries at high voltage. J. Energy Chem. 2022, 67, 655–662. [Google Scholar] [CrossRef]
- Cui, X.; Wang, S.; Ye, X.; Fan, X.; Gao, C.; Quan, Y.; Wen, S.; Cai, X.; Huang, J.; Li, S. Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries. Energy Storage Mater. 2022, 45, 1153–1164. [Google Scholar] [CrossRef]
- Xie, Y.; Gabriel, E.; Fan, L.; Hwang, I.; Li, X.; Zhu, H.; Ren, Y.; Sun, C.; Pipkin, J.; Dustin, M.; et al. Role of Lithium Doping in P2-Na0.67Ni0.33Mn0.67O2 for Sodium-Ion Batteries. Chem. Mater. 2021, 33, 4445–4455. [Google Scholar] [CrossRef]
- Chen, C.; Huang, W.; Li, Y.; Zhang, M.; Nie, K.; Wang, J.; Zhao, W.; Qi, R.; Zuo, C.; Li, Z.; et al. P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy 2021, 90, 106504. [Google Scholar] [CrossRef]
- Kang, K.; Meng, Y.S.; Bréger, J.; Grey, C.P.; Ceder, G. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science 2006, 311, 977–980. [Google Scholar] [CrossRef]
- Oku, M.; Tokuda, H.; Hirokawa, K. Final states after Ni 2p photoemission in the nickel—Oxygen system. J. Electron Spectrosc. Relat. Phenom. 1991, 53, 201–211. [Google Scholar] [CrossRef]
- Moeez, I.; Susanto, D.; Chang, W.; Lim, H.-D.; Chung, K.Y. Artificial cathode electrolyte interphase by functional additives toward long-life sodium-ion batteries. Chem. Eng. J. 2021, 425, 130547. [Google Scholar] [CrossRef]
- Zuo, W.; Qiu, J.; Liu, X.; Ren, F.; Liu, H.; He, H.; Luo, C.; Li, J.; Ortiz, G.F.; Duan, H.; et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat. Commun. 2020, 11, 3544. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jia, Z.; Lv, H.; Wang, C.; Zhao, N.; Guo, X. Improved stability against moisture and lithium metal by doping F into Li3InCl6. J. Power Sources 2022, 545, 231939. [Google Scholar] [CrossRef]
- Zhang, L.; Guan, C.; Xie, Y.; Li, H.; Wang, A.; Chang, S.; Zheng, J.; Lai, Y.; Zhang, Z. Heteroatom-Substituted P2-Na2/3Ni1/4Mg1/12Mn2/3O2 Cathode with {010} Exposing Facets Boost Anionic Activity and High-Rate Performance for Na-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 18313–18323. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.F.; Wang, W.; Chen, Y.; Li, G.; Li, X.G. Raman spectra study on nonstoichiometric compound NaxCoO2. Phys. Rev. B 2006, 73, 082518. [Google Scholar] [CrossRef]
- Zhong, X.-B.; He, C.; Gao, F.; Tian, Z.-Q.; Li, J.-F. In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2–Na2/3Ni1/3Mn2/3O2: Cathode materials for sodium batteries. J. Energy Chem. 2021, 53, 323–328. [Google Scholar] [CrossRef]
- Bao, S.; Huang, Y.-Y.; Wang, J.-Z.; Luo, S.-h.; Su, G.-Q.; Lu, J.-L. High-Operating Voltage, Long-Life Layered Oxides for Sodium Ion Batteries Enabled by Cosubstitution of Titanium and Magnesium. ACS Sustain. Chem. Eng. 2021, 9, 2534–2542. [Google Scholar] [CrossRef]
- Tang, K.; Huang, Y.; Xie, X.; Cao, S.; Liu, L.; Liu, H.; Luo, Z.; Wang, Y.; Chang, B.; Shu, H.; et al. Electrochemical performance and structural stability of air-stable Na0.67Ni0.33Mn0.67-xTixO2 cathode materials for high-performance sodium-ion batteries. Chem. Eng. J. 2020, 399, 125725. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Liu, J.; Xiong, S.; Ma, X.; Liu, P.; Bai, J.; Xu, W.; Tang, Y.; Hu, Y.Y.; et al. Lithium-Doping Stabilized High-Performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 Cathode for Sodium Ion Batteries. J. Am. Chem. Soc. 2019, 141, 6680–6689. [Google Scholar] [CrossRef]
- Wang, Q.; Mariyappan, S.; Rousse, G.; Morozov, A.V.; Porcheron, B.; Dedryvere, R.; Wu, J.; Yang, W.; Zhang, L.; Chakir, M.; et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat. Mater. 2021, 20, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Yu, Y.; Wang, J.; Zheng, L.; Wang, Z.; Qiu, Y.; Hao, Y.; Liu, X. Mitigating the P2-O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction. J. Mater. Chem. A 2021, 9, 10803–10811. [Google Scholar] [CrossRef]
- Li, L.; Su, G.; Lu, C.; Ma, X.; Ma, L.; Wang, H.; Cao, Z. Effect of lithium doping in P2-Type layered oxide cathodes on the electrochemical performances of Sodium-Ion batteries. Chem. Eng. J. 2022, 446, 136923. [Google Scholar] [CrossRef]
- Buchholz, D.; Moretti, A.; Kloepsch, R.; Nowak, S.; Siozios, V.; Winter, M.; Passerini, S. Toward Na-ion Batteries-Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material. Chem. Mater. 2013, 25, 142–148. [Google Scholar] [CrossRef]
- Buchholz, D.; Chagas, L.G.; Vaalma, C.; Wu, L.; Passerini, S. Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. J. Mater. Chem. A 2014, 2, 13415–13421. [Google Scholar] [CrossRef]
- Zheng, X.; Li, P.; Zhu, H.; Rui, K.; Zhao, G.; Shu, J.; Xu, X.; Sun, W.; Dou, S.X. New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Mater. 2018, 15, 257–265. [Google Scholar] [CrossRef]
- Peng, B.; Chen, Y.; Wang, F.; Sun, Z.; Zhao, L.; Zhang, X.; Wang, W.; Zhang, G. Unusual Site-Selective Doping in Layered Cathode Strengthens Electrostatic Cohesion of Alkali-Metal Layer for Practicable Sodium-Ion Full Cell. Adv. Mater. 2022, 34, 2103210. [Google Scholar] [CrossRef]
- Venkateswara Rao, C.; Soler, J.; Katiyar, R.; Shojan, J.; West, W.C.; Katiyar, R.S. Investigations on Electrochemical Behavior and Structural Stability of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-Ion Cathodes via in-Situ and ex-Situ Raman Spectroscopy. J. Phys. Chem. C 2014, 118, 14133–14141. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, S.; Jiang, H.; Qu, F.; Wu, X. Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J. Mater. Chem. A 2015, 3, 5722–5729. [Google Scholar] [CrossRef]
- Dokko, K.; Mohamedi, M.; Anzue, N.; Itoh, T.; Uchida, I. In situ Raman spectroscopic studies of LiNixMn2 − xO4 thin film cathode materials for lithium ion secondary batteries. J. Mater. Chem. 2002, 12, 3688–3693. [Google Scholar] [CrossRef]
- Gao, S.; Zhan, X.; Cheng, Y.-T. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J. Power Sources 2019, 410–411, 45–52. [Google Scholar] [CrossRef]
- Wang, S.Y.; Yan, M.Y.; Li, Y.; Vinado, C.; Yang, J.H. Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. J. Power Sources 2018, 393, 75–82. [Google Scholar] [CrossRef]
- Song, S.; Kotobuki, M.; Zheng, F.; Xu, C.; Hu, N.; Lu, L.; Wang, Y.; Li, W.-D. Y-Doped Na2ZrO3: A Na-Rich Layered Oxide as a High-Capacity Cathode Material for Sodium-Ion Batteries. ACS Sustain. Chem. Eng. 2017, 5, 4785–4792. [Google Scholar] [CrossRef]
- Zhan, X.; Lai, S.; Gobet, M.P.; Greenbaum, S.G.; Shirpour, M. Defect chemistry and electrical properties of garnet-type Li7La3Zr2O12. Phys. Chem. Chem. Phys. 2018, 20, 1447–1459. [Google Scholar] [CrossRef]
- Paulsen, J.M.; Dahn, J.R. Studies of the layered manganese bronzes, Na2/3[Mn1−xMx]O2 with M=Co, Ni, Li, and Li2/3[Mn1−xMx]O2 prepared by ion-exchange. Solid State Ion. 1999, 126, 3–24. [Google Scholar] [CrossRef]
- Li, R.; Jiang, D.; Du, P.; Yuan, C.; Cui, X.; Tang, Q.; Zheng, J.; Li, Y.; Lu, K.; Ren, X.; et al. Negating Na‖Na3Zr2Si2PO12 interfacial resistance for dendrite-free and “Na-less” solid-state batteries. Chem. Sci. 2022, 13, 14132–14140. [Google Scholar] [CrossRef] [PubMed]
- Talyosef, Y.; Markovsky, B.; Salitra, G.; Aurbach, D.; Kim, H.J.; Choi, S. The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries. J. Power Sources 2005, 146, 664–669. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Guo, W.; Li, R.; Du, P.; Zhan, X.; Gao, S. Structure, Electrochemical, and Transport Properties of Li- and F-Modified P2-Na2/3Ni1/3Mn2/3O2 Cathode Materials for Na-Ion Batteries. Coatings 2023, 13, 626. https://doi.org/10.3390/coatings13030626
Chen X, Guo W, Li R, Du P, Zhan X, Gao S. Structure, Electrochemical, and Transport Properties of Li- and F-Modified P2-Na2/3Ni1/3Mn2/3O2 Cathode Materials for Na-Ion Batteries. Coatings. 2023; 13(3):626. https://doi.org/10.3390/coatings13030626
Chicago/Turabian StyleChen, Xinglong, Wenyue Guo, Rui Li, Peng Du, Xiaowen Zhan, and Shan Gao. 2023. "Structure, Electrochemical, and Transport Properties of Li- and F-Modified P2-Na2/3Ni1/3Mn2/3O2 Cathode Materials for Na-Ion Batteries" Coatings 13, no. 3: 626. https://doi.org/10.3390/coatings13030626
APA StyleChen, X., Guo, W., Li, R., Du, P., Zhan, X., & Gao, S. (2023). Structure, Electrochemical, and Transport Properties of Li- and F-Modified P2-Na2/3Ni1/3Mn2/3O2 Cathode Materials for Na-Ion Batteries. Coatings, 13(3), 626. https://doi.org/10.3390/coatings13030626