Review of the Versatile Patterning Methods of Ag Nanowire Electrodes
Abstract
:1. Introduction
2. Various Patterning Technologies of Ag Nanowire Electrodes
2.1. Photolithography
2.2. Laser Patterning
2.3. Nanoimprint Lithography (NIL)
2.4. Patterning with Intense Pulsed Light (IPL) Followed by Wiping or Cleaning Process
2.5. Inkjet Printing
2.6. Electrohydrodynamic Jet (E-Jet) Printing
3. Summary and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sriram, G.; Bhat, M.P.; Patil, P.; Uthappa, U.T.; Jung, H.-Y.; Altalhi, T.; Kumeria, T.; Aminabhavi, T.M.; Pai, R.K.; Madhuprasad; et al. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. TrAC Trends Anal. Chem. 2017, 93, 212–227. [Google Scholar] [CrossRef]
- Hong, S.; Kang, S.H.; Kim, Y.; Jung, C.W. Transparent and Flexible Antenna for Wearable Glasses Applications. IEEE Trans. Antennas Propag. 2016, 64, 2797–2804. [Google Scholar] [CrossRef]
- Das, T.; Sharma, B.K.; Katiyar, A.K.; Ahn, J.-H. Graphene-based flexible and wearable electronics *. J. Semicond. 2018, 39, 011007. [Google Scholar] [CrossRef]
- Choi, J.Y.; Park, I.P.; Heo, S.W. Ultra-Flexible Organic Solar Cell Based on Indium-Zinc-Tin Oxide Transparent Electrode for Power Source of Wearable Devices. Nanomaterials 2021, 11, 2633. [Google Scholar] [CrossRef]
- Patil, P.; Madhuprasad; Kumeria, T.; Losic, D.; Kurkuri, M. Isolation of circulating tumour cells by physical means in a microfluidic device: A review. RSC Adv. 2015, 5, 89745–89762. [Google Scholar] [CrossRef]
- Jozić, S.; Bajić, D.; Dumanić, I.; Bagavac, Ž. Optimization for an efficient and highly productive turning process. Rep. Mech. Eng. 2021, 2, 212–221. [Google Scholar] [CrossRef]
- Song, J.Y.; Oh, J.H.; Choi, D.; Park, S.M. Highly efficient patterning technique for silver nanowire electrodes by electrospray deposition and its application to self-powered triboelectric tactile sensor. Sci. Rep. 2021, 11, 21437. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Schlenker, E.; Ha, H.; Cheong, J.Y.; Hwang, B. Versatile Applications of Silver Nanowire-Based Electrodes and Their Impacts. Micromachines 2023, 14, 562. [Google Scholar] [CrossRef]
- Hwang, B.; Matteini, P. Review on dry film photoresist-based patterning of Ag nanowire flexible electrodes for wearable electronics. Fash. Text. 2022, 9, 27. [Google Scholar] [CrossRef]
- Hsueh, Y.-H.; Ranjan, A.; Lyu, L.-M.; Hsiao, K.-Y.; Chang, Y.-C.; Lu, M.-P.; Lu, M.-Y. In Situ/Operando Studies for Reduced Eletromigration in Ag Nanowires with Stacking Faults. Adv. Electron. Mater. 2023, 9, 2201054. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H.; Hwang, B. Fracture behavior of metal oxide/silver nanowire composite electrodes under cyclic bending. J. Alloys Compd. 2019, 773, 361–366. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Kim, D.; Kim, B.; Chae, H.; Yi, H.; Hwang, B. High-Performance Transparent Quantum Dot Light-Emitting Diode with Patchable Transparent Electrodes. ACS Appl. Mater. Interfaces 2019, 11, 26333–26338. [Google Scholar] [CrossRef]
- Nam, S.; Song, M.; Kim, D.-H.; Cho, B.; Lee, H.M.; Kwon, J.-D.; Park, S.-G.; Nam, K.-S.; Jeong, Y.; Kwon, S.-H.; et al. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode. Sci. Rep. 2014, 4, 4788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, B.; Han, Y.; Matteini, P. Bending Fatigue Behavior Of Ag Nanowire/Cu Thin-Film Hybrid Interconnects For Wearable Electronics. Facta Univ. Series: Mech. Eng. 2022, 20, 553–560. [Google Scholar] [CrossRef]
- Ha, B.; Jo, S. Hybrid Ag nanowire transparent conductive electrodes with randomly oriented and grid-patterned Ag nanowire networks. Sci. Rep. 2017, 7, 11614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.-H.; Ok, K.-H.; Lee, C.-J.; Kim, Y.; Kwak, M.-G.; Han, C.J.; Kim, N.; Ju, B.-K.; Kim, J.-W. Intense-pulsed-light irradiation of Ag nanowire-based transparent electrodes for use in flexible organic light emitting diodes. Org. Electron. 2015, 17, 208–215. [Google Scholar] [CrossRef]
- Kim, H.; Qaiser, N.; Hwang, B. Electro-mechanical response of stretchable pdms composites with a hybrid filler system. Facta Univ. Series Mech. Eng. 2023. [Google Scholar] [CrossRef]
- Seo, Y.; Hwang, B. Mulberry-paper-based composites for flexible electronics and energy storage devices. Cellulose 2019, 26, 8867–8875. [Google Scholar] [CrossRef]
- Amicucci, C.; Ha, H.; Matteini, P.; Hwang, B. Facile fabrication of silver-nanowire-based chips using dry-film photoresist for wearable optical detection. Fash. Text. 2022, 9, 20. [Google Scholar] [CrossRef]
- Seo, Y.; Ha, H.; Cheong, J.Y.; Leem, M.; Darabi, S.; Matteini, P.; Müller, C.; Yun, T.G.; Hwang, B. Highly Reliable Yarn-Type Supercapacitor Using Conductive Silk Yarns with Multilayered Active Materials. J. Nat. Fibers 2022, 19, 835–846. [Google Scholar] [CrossRef]
- Sae-Long, W.; Limkatanyu, S.; Sukontasukkul, P.; Damrongwiriyanupap, N.; Rungamornrat, J.; Prachasaree, W. Fourth-Order Strain Gradient Bar-Substrate Model with Nonlocal and Surface Effects for the Analysis of Nanowires Embedded in Substrate Media. Facta Univ. Series Mech. Eng. 2021, 19, 657–680. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.; Goyat, M.S.; Avasthi, D.K. A review of the latest developments in the production and applications of Ag-nanowires as transparent electrodes. Mater. Today Commun. 2022, 33, 104433. [Google Scholar] [CrossRef]
- Li, X.; Park, H.; Lee, M.H.; Hwang, B.; Kim, S.H.; Lim, S. High resolution patterning of Ag nanowire flexible transparent electrode via electrohydrodynamic jet printing of acrylic polymer-silicate nanoparticle composite overcoating layer. Org. Electron. 2018, 62, 400–406. [Google Scholar] [CrossRef]
- Kim, S.; Yun, T.G.; Kang, C.; Son, M.-J.; Kang, J.-G.; Kim, I.-H.; Lee, H.-J.; An, C.-H.; Hwang, B. Facile fabrication of paper-based silver nanostructure electrodes for flexible printed energy storage system. Mater. Des. 2018, 151, 1–7. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, B. Ag nanowire electrode with patterned dry film photoresist insulator for flexible organic light-emitting diode with various designs. Mater. Des. 2018, 160, 572–577. [Google Scholar] [CrossRef]
- Ko, Y.; Kim, J.; Kim, D.; Yamauchi, Y.; Kim, J.H.; You, J. A Simple Silver Nanowire Patterning Method Based on Poly(Ethylene Glycol) Photolithography and Its Application for Soft Electronics. Sci. Rep. 2017, 7, 2282. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.; Park, J.S.; Han, J.H.; Choi, Y.; Chung, D.S.; Kim, S.H. Patterned transparent electrode with a continuous distribution of silver nanowires produced by an etching-free patterning method. Sci. Rep. 2017, 7, 40087. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, S.; Xie, Y.; Wang, D.; Zhu, D.; Xu, X.; Tan, T.; Fong, H.H. Surface Patterning of PEDOT:PSS by Photolithography for Organic Electronic Devices. J. Nanomater. 2015, 2015, 603148. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, B.; Cho, S.M.; Lee, H.-J.; Hwang, B. Etchant-free patterning of silver nanowire transparent electrode using dry-film photoresists for organic light-emitting diodes. Mater. Lett. 2017, 209, 433–436. [Google Scholar] [CrossRef]
- Jeon, Y.; Jin, H.B.; Jung, S.; Go, H.; Lee, I.; Lee, C.; Joo, Y.K.; Park, K. Highly Flexible Touch Screen Panel Fabricated with Silver Nanowire Crossing Electrodes and Transparent Bridges. J. Opt. Soc. Korea 2015, 19, 508–513. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Xiang, H.-Y.; Shen, S.; Li, Y.-Q.; Chen, J.-D.; Xie, H.-J.; Goldthorpe, I.A.; Chen, L.-S.; Lee, S.-T.; Tang, J.-X. High-Performance Flexible Organic Light-Emitting Diodes Using Embedded Silver Network Transparent Electrodes. ACS Nano 2014, 8, 12796–12805. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Yeo, J.; Lee, J.; Lee, H.; Lee, P.; Lee, S.S.; Ko, S.H. Selective Laser Direct Patterning of Silver Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel. J. Nanosci. Nanotechnol. 2015, 15, 2317–2323. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Lee, M. Laser-induced electrical property patterning of Ag nanowire transparent electrode. Mater. Lett. 2016, 176, 110–113. [Google Scholar] [CrossRef]
- An, C.-H.; Kim, S.; Lee, H.-J.; Hwang, B. Facile patterning using dry film photo-resists for flexible electronics: Ag nanowire networks and carbon nanotube networks. J. Mater. Chem. C 2017, 5, 4804–4809. [Google Scholar] [CrossRef]
- Song, R.; Yao, S.; Liu, Y.; Wang, H.; Dong, J.; Zhu, Y.; O’Connor, B.T. Facile Approach to Fabricating Stretchable Organic Transistors with Laser-Patterned Ag Nanowire Electrodes. ACS Appl. Mater. Interfaces 2020, 12, 50675–50683. [Google Scholar] [CrossRef]
- Oh, H.; Lee, J.; Kim, J.-H.; Park, J.-W.; Lee, M. Fabrication of Invisible Ag Nanowire Electrode Patterns Based on Laser-Induced Rayleigh Instability. J. Phys. Chem. C 2016, 120, 20471–20477. [Google Scholar] [CrossRef]
- van de Groep, J.; Gupta, D.; Verschuuren, M.A.; Wienk, M.M.; Janssen, R.A.J.; Polman, A. Large-area soft-imprinted nanowire networks as light trapping transparent conductors. Sci. Rep. 2015, 5, 11414. [Google Scholar] [CrossRef]
- Shi, S.; Lu, N.; Lu, Y.; Wang, Y.; Qi, D.; Xu, H.; Chi, L. Fabrication of Periodic Metal Nanowires with Microscale Mold by Nanoimprint Lithography. ACS Appl. Mater. Interfaces 2011, 3, 4174–4179. [Google Scholar] [CrossRef]
- Sciacca, B.; van de Groep, J.; Polman, A.; Garnett, E.C. Solution-Grown Silver Nanowire Ordered Arrays as Transparent Electrodes. Adv. Mater. 2016, 28, 905–909. [Google Scholar] [CrossRef]
- He, X.; Shen, G.; Xu, R.; Yang, W.; Zhang, C.; Liu, Z.; Chen, B.; Liu, J.; Song, M. Hexagonal and Square Patterned Silver Nanowires/PEDOT:PSS Composite Grids by Screen Printing for Uniformly Transparent Heaters. Polymers 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.; Ju, B.-K.; Kim, J.-W. Ultra-Facile Fabrication of Stretchable and Transparent Capacitive Sensor Employing Photo-Assisted Patterning of Silver Nanowire Networks. Adv. Mater. Technol. 2016, 1, 1600062. [Google Scholar] [CrossRef]
- Liu, S.; Ho, S.; So, F. Novel Patterning Method for Silver Nanowire Electrodes for Thermal-Evaporated Organic Light Emitting Diodes. ACS Appl. Mater. Interfaces 2016, 8, 9268–9274. [Google Scholar] [CrossRef]
- Wang, S.; Wu, X.; Lu, J.; Luo, Z.; Xie, H.; Zhang, X.; Lin, K.; Wang, Y. Inkjet-Printed Silver Nanowire Ink for Flexible Transparent Conductive Film Applications. Nanomaterials 2022, 12, 842. [Google Scholar] [CrossRef] [PubMed]
- Go, M.; Hwang, B.; Lim, S. Highly reliable mulberry paper (Hanji)-based electrode with printed silver nanowire/zinc oxide hybrid for soft electronics. Mater. Manuf. Process. 2019, 34, 1605–1611. [Google Scholar] [CrossRef]
- Qi, X.; Ha, H.; Hwang, B.; Lim, S. Printability of the Screen-Printed Strain Sensor with Carbon Black/Silver Paste for Sensitive Wearable Electronics. Appl. Sci. 2020, 10, 6983. [Google Scholar] [CrossRef]
- Finn, D.J.; Lotya, M.; Coleman, J.N. Inkjet Printing of Silver Nanowire Networks. ACS Appl. Mater. Interfaces 2015, 7, 9254–9261. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Seong, B.; Kim, J.; Jang, Y.; Byun, D. Direct Alignment and Patterning of Silver Nanowires by Electrohydrodynamic Jet Printing. Small 2014, 10, 3918–3922. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lee, G.S.; Park, S.H.; Kong, H.; An, T.K.; Kim, S.H. Direct writing of silver nanowire electrodes via dragging mode electrohydrodynamic jet printing for organic thin film transistors. Org. Electron. 2018, 62, 357–365. [Google Scholar] [CrossRef]
Methods | Merits | Demerits |
---|---|---|
Photolithography |
|
|
Laser patterning |
|
|
NIL |
|
|
IPL/wiping |
|
|
Inkjet printing |
|
|
E-jet printing |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, B.; Matteini, P. Review of the Versatile Patterning Methods of Ag Nanowire Electrodes. Coatings 2023, 13, 617. https://doi.org/10.3390/coatings13030617
Hwang B, Matteini P. Review of the Versatile Patterning Methods of Ag Nanowire Electrodes. Coatings. 2023; 13(3):617. https://doi.org/10.3390/coatings13030617
Chicago/Turabian StyleHwang, Byungil, and Paolo Matteini. 2023. "Review of the Versatile Patterning Methods of Ag Nanowire Electrodes" Coatings 13, no. 3: 617. https://doi.org/10.3390/coatings13030617
APA StyleHwang, B., & Matteini, P. (2023). Review of the Versatile Patterning Methods of Ag Nanowire Electrodes. Coatings, 13(3), 617. https://doi.org/10.3390/coatings13030617