Special Issue: Behavior of Materials (Alloys, Coatings) in Conditions Specific to Gen IV Nuclear Reactors
Conflicts of Interest
References
- DoE, U.S. A Technology Roadmap for Generation IV Nuclear Energy Systems. In Proceedings of the Nuclear Energy Research Advisory Committee and the Generation IV International Forum; 2022; Available online: https://www.gen-4.org/gif/jcms/c_40481/technology-roadmap (accessed on 4 November 2022).
- Murty, K.L.; Charit, I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 2008, 383, 189–195. [Google Scholar] [CrossRef]
- Yvon, P. Structural Materials for Generation IV Nuclear Reactors, 1st ed.; Woodhead Publishing: Sawston, UK, 2016; ISBN 9780081009062. [Google Scholar]
- Allen, T.R.; Sridharan, K.; Tan, L.; Windes, W.E.; Cole, J.I.; Crawford, D.C.; Was, G.S. Materials Challenges for Generation IV Nuclear Energy Systems. Nucl. Technol. 2008, 162, 342–357. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Hosemann, P.; Vujić, J. Material issues for current and advanced designs. Contemp. Mater. 2014, 5, 10–25. [Google Scholar] [CrossRef]
- Tarantino, M.; Angiolini, M.; Bassini, S.; Cataldo, S.; Ciantelli, C.; Cristalli, C.; Del Nevo, A.; Di Piazza, I.; Diamanti, D.; Eboli, M.; et al. Overview on Lead-Cooled Fast Reactor Design and Related Technologies Development in ENEA. Energies 2021, 14, 5157. [Google Scholar] [CrossRef]
- Vogt, J.-B.; Proriol Serre, I. A Review of the Surface Modifications for Corrosion Mitigation of Steels in Lead and LBE. Coatings 2021, 11, 53. [Google Scholar] [CrossRef]
- Fazio, C.; Balbaud, F. Corrosion phenomena induced by liquid metals in Generation IV reactors. In Structural Materials for Generation IV Nuclear Reactors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–74. [Google Scholar]
- Nuclear Energy Agency (NEA). Nuclear Energy Agency, Corrosion protection in lead and lead-bismuth eutectic at elevated temperatures. In Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies; 2015; pp. 631–632. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/46/133/46133907.pdf (accessed on 5 November 2022).
- Chen, Y.; Hu, L.; Qiu, C.; He, B.; Zhou, J.; Zhao, J.; Li, Y. Influence of LBE Temperatures on the microstructure and properties of crystalline and amorphous multiphase ceramic coatings. Coatings 2019, 9, 543. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Brady, M.P.; Lu, Z.P.; Maziasz, P.J.; Liu, C.T.; Pint, B.A.; More, K.L.; Meyer, H.M.; Payzant, E.A. Creep-resistant Al2O3-forming austenitic stainless steels. Science 2007, 316, 433–436. [Google Scholar] [CrossRef]
- Ejenstam, J.; Szakalos, P. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead. J. Nucl. Mater. 2015, 461, 164–170. [Google Scholar] [CrossRef]
- Cižek, J.; Kalivodová, J.; Janecek, M.; Stráský, J.; Srba, O.; Macková, A. Advanced Structural Materials for Gas-Cooled Fast Reactors—A Review. Metals 2021, 11, 76. [Google Scholar] [CrossRef]
- Zinkle, S.J. Nuclear technology applications of ceramics, composites and other nonmetallic materials. In Proceedings of the IAEA/ICTP School on Physics of Radiation Effects and its Simulation for Non-Metallic Condensed Matter, Trieste, Italy, 13–24 August 2012. [Google Scholar]
- Steinbrück, M.; Angelici, A.V.; Markel, I.J.; Stegmaier, U.; Gerhards, U.; Seifert, H.J. Oxidation of SiCf-SiC CMC cladding tubes for GFR application in impure helium atmosphere and materials interactions with tantalum liner at high temperatures up to 1600 °C. J. Nucl. Mater. 2019, 517, 337–348. [Google Scholar] [CrossRef]
- Corwin, W.R.; Burchell, T.D.; Katoh, Y.; McGreevy, T.E.; Nanstad, R.K.; Ren, W.; Snead, L.L.; Wilson, D.F. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials; Oak Ridge National Lab.: Oak Ridge, TN, USA, 2008.
- Park, J.Y. SiCf/SiC composites as core materials for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Chapter 12; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 441–470. [Google Scholar]
- Katoh, Y.; Snead, L.L.; Henager, C.H., Jr.; Nozawa, T.; Hinoki, T.; Ivekovic, A.; Novak, S.; Gonzalez de Vicente, S.M. Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 2014, 455, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Marsden, B.J.; Jones, A.N.; Hall, G.N.; Treifi, M.; Mummery, P.M. Graphite as a core material for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Chapter 14; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 495–532. [Google Scholar]
- Zhou, X.W.; Tang, Y.P.; Lu, Z.M.; Zhang, J.; Liu, B. Nuclear graphite for high temperature gas-cooled reactors. New Carbon Mater. 2017, 32, 193–204. [Google Scholar] [CrossRef]
- Weaver, K.D.; Totemeier, T.; Feldman, E.E.; Kulak, R.F.; Tzanos, C.P.; Cheng, L.-Y.; Jo, J.; Corwin, W.; Gale, W.F.; Allen, T.; et al. Gas-Cooled Fast Reactor (GFR) FY 05 Annual Report; Idaho National Laboratory Report INL/EXT-05-00799; 2005. Available online: https://inldigitallibrary.inl.gov/sites/sti/sti/3480236.pdf (accessed on 5 November 2022).
- Guo, S.; Zhang, J.; Wu, W.; Zhou, W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Prog. Mater. Sci. 2018, 97, 448–487. [Google Scholar] [CrossRef]
- Chengliang, L.; Mengjia, Y. The Challenge of Nuclear Reactor Structural Materials for Generation IV Nuclear Energy Systems. In Proceedings of the 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20), Espoo, Finland, 9–14 August 2009. SMiRT 20-Division 10, Paper 1586. [Google Scholar]
- Guzonas, D.; Novotny, R. Supercritical water-cooled reactor materials e Summary of research and open issues. Progress in Nuclear Energy 2014, 77, 361–372. [Google Scholar] [CrossRef]
- Buongiorno, J.; MacDonald, P.E. Supercritical Water Reactor (SCWR)—Progress Report for the FY-03 Generation-IV R&D Activities for the Development of the SCWR in the U.S.; 2003. Available online: http://large.stanford.edu/courses/2017/ph241/jones-c1/docs/ext-03-01210.pdf (accessed on 5 November 2022).
- Nieuwenhove, R. Van Investigation of coatings, applied by PVD, for the corrosion protection of materials in supercritical water. In Proceedings of the 6th International Conference on Supercritical Water Reactors, Shenzhen, China, 3 March 2013. [Google Scholar]
- Baindur, S. Materials challenges for the Supercritical Water-Cooled Reactor (SCWR). Can. Nucl. Soc. Bull. 2008, 29, 32–38. [Google Scholar]
- Joint European Canadian Chinese Development of Small Modular Reactor Technology. Available online: https://ecc-smart.eu/ (accessed on 5 November 2022).
- Yutai, K.; Lance, S. Silicon carbide and its composites for nuclear applications-historical overview. J. Nucl. Mater. 2019, 526, 151849. [Google Scholar] [CrossRef]
- Malerba, L.; Al Mazouzi, A.; Bertolus, M.; Cologna, M.; Efsing, P.; Jianu, A.; Kinnunen, P.; Nilsson, K.F.; Rabung, M.; Tarantino, M. Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations, Review. Energies 2022, 15, 1845. [Google Scholar] [CrossRef]
- Rebak, R.B.; Terrani, K.A.; Fawcett, R.M. FeCrAl Alloys for Accident Tolerant Fuel Cladding in Light Water Reactors. In Proceedings of the Pressure Vessels and Piping Conference, Vancouver, BC, Canada, 17–21 July 2016. Paper No: PVP2016-63162, V06BT06A009. [Google Scholar]
- Huang, X.; Li, X.; Fang, X.; Xiong, Z.; Peng, Y.; Wie, L. Research progress in FeCrAl alloys for accident-tolerant fuel cladding. J. Mater. Eng. 2020, 48, 19–33. [Google Scholar]
- Pint, B.A.; Dryepondt, S.; Unocic, K.A.; Hoelzer, D.T. Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications. JOM 2014, 66, 2458–2466. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fulger, M.; Khumsa-Ang, K.; Šípová, M.; Ducu, C.M.; Sáez-Maderuelo, A. Special Issue: Behavior of Materials (Alloys, Coatings) in Conditions Specific to Gen IV Nuclear Reactors. Coatings 2023, 13, 58. https://doi.org/10.3390/coatings13010058
Fulger M, Khumsa-Ang K, Šípová M, Ducu CM, Sáez-Maderuelo A. Special Issue: Behavior of Materials (Alloys, Coatings) in Conditions Specific to Gen IV Nuclear Reactors. Coatings. 2023; 13(1):58. https://doi.org/10.3390/coatings13010058
Chicago/Turabian StyleFulger, Manuela, Kittima Khumsa-Ang, Monika Šípová, Catalin Marian Ducu, and Alberto Sáez-Maderuelo. 2023. "Special Issue: Behavior of Materials (Alloys, Coatings) in Conditions Specific to Gen IV Nuclear Reactors" Coatings 13, no. 1: 58. https://doi.org/10.3390/coatings13010058
APA StyleFulger, M., Khumsa-Ang, K., Šípová, M., Ducu, C. M., & Sáez-Maderuelo, A. (2023). Special Issue: Behavior of Materials (Alloys, Coatings) in Conditions Specific to Gen IV Nuclear Reactors. Coatings, 13(1), 58. https://doi.org/10.3390/coatings13010058