The Microstructure of Zr/Nb Nanoscale Multilayer Coatings Irradiated with Helium Ions
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daghbouj, N.; Sen, H.S.; Callisti, M.; Vronka, M.; Karlik, M.; Duchon, J.; Čech, J.; Havránek, V.; Polcar, T. Revealing Nanoscale Strain Mechanisms in Ion-Irradiated Multilayers. Acta Mater. 2022, 229, 117807. [Google Scholar] [CrossRef]
- Mishin, I.P.; Grabovetskaya, G.P.; Stepanova, E.N.; Laptev, R.S.; Teresov, A.D. Hydrogen Effect on the Defect Structure Formation in the Zr-wt.% Nb Alloy Under Pulsed Electron Beam Irradiation. Russ. Phys. J. 2019, 62, 854–860. [Google Scholar] [CrossRef]
- Stepanova, E.N.; Grabovetskaya, G.P.; Mishin, I.P.; Bulinko, D.Y. Structure and Mechanical Properties of a Zr-1Nb Alloy, Obtained by the Method of Severe Plastic Deformation. Mater. Today Proc. 2015, 2, 365–369. [Google Scholar]
- Li, H.; Ma, D.; Wang, H.; Yun, D.; Hao, Z.; Deng, J.; Zhang, R.; Li, Z. Microstructure and Oxidation Behavior of CrCN/TiSiCN Nano-Multilayer Coatings on Zircaloy in High-Temperature Steam. Corros. Sci. 2023, 211, 110883. [Google Scholar] [CrossRef]
- Callisti, M.; Lozano-Perez, S.; Polcar, T. Structural and Mechanical Properties of γ-Irradiated Zr/Nb Multilayer Nanocomposites. Mater. Lett. 2016, 163, 138–141. [Google Scholar] [CrossRef]
- Callisti, M.; Karlik, M.; Polcar, T. Competing Mechanisms on the Strength of Ion-Irradiated Zr/Nb Nanoscale Multilayers: Interface Strength versus Radiation Hardening. Scr. Mater. 2018, 152, 31–35. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Snead, L.L. Designing Radiation Resistance in Materials for Fusion Energy. Annu. Rev. Mater. Res 2014, 44, 241–267. [Google Scholar] [CrossRef]
- Ham, B.; Zhang, X. High Strength Mg/Nb Nanolayer Composites. Mater. Sci. Eng. A 2011, 528, 2028–2033. [Google Scholar] [CrossRef]
- Yang, G.H.; Zhao, B.; Gao, Y.; Pan, F. Investigation of Nanoindentation on Co/Mo Multilayers by the Continuous Stiffness Measurement Technique. Surf. Coat. Technol. 2005, 191, 127–133. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Kotoka, R.; Ligda, J.P.; Cao, B.B.; Yarmolenko, S.N.; Schuster, B.E.; Wei, Q. The Microstructure and Mechanical Behavior of Mg/Ti Multilayers as a Function of Individual Layer Thickness. Acta Mater. 2014, 63, 216–231. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Lei, S.; Liu, Y.; Niu, J.J.; Chen, Y.; Liu, G.; Zhang, X.; Sun, J. Length Scale-Dependent Deformation Behavior of Nanolayered Cu/Zr Micropillars. Acta Mater. 2012, 60, 1610–1622. [Google Scholar] [CrossRef]
- Lomygin, A.D.; Laptev, R.S.; Krotkevich, D.G. Positron Annihilation Analysis of Nanosized Metal Coatings Zr/Nb after He+ Ion Irradiation. In Proceedings of the 8th International Congress on Energy Fluxes and Radiation Effects, Tomsk, Russia, 2–8 October 2022; pp. 1203–1207. [Google Scholar] [CrossRef]
- Laptev, R.; Stepanova, E.; Pushilina, N.; Svyatkin, L.; Krotkevich, D.; Lomygin, A.; Ognev, S.; Siemek, K.; Doroshkevich, A.; Uglov, V. Distribution of Hydrogen and Defects in the Zr/Nb Nanoscale Multilayer Coatings after Proton Irradiation. Materials 2022, 15, 3332. [Google Scholar] [CrossRef]
- Laptev, R.; Svyatkin, L.; Krotkevich, D.; Stepanova, E.; Pushilina, N.; Lomygin, A.; Ognev, S.; Siemek, K.; Uglov, V. First-Principles Calculations and Experimental Study of H+-Irradiated Zr/Nb Nanoscale Multilayer System. Metals 2021, 11, 627. [Google Scholar] [CrossRef]
- Laptev, R.; Lomygin, A.; Krotkevich, D.; Syrtanov, M.; Kashkarov, E.; Bordulev, Y.; Siemek, K.; Kobets, A. Effect of Proton Irradiation on the Defect Evolution of Zr/Nb Nanoscale Multilayers. Metals 2020, 10, 535. [Google Scholar] [CrossRef]
- Zhang, X.; Hattar, K.; Chen, Y.; Shao, L.; Li, J.; Sun, C.; Yu, K.; Li, N.; Taheri, M.L.; Wang, H.; et al. Radiation Damage in Nanostructured Materials. Prog. Mater. Sci. 2018, 96, 217–321. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Caro, A.; Demkowicz, M.J.; Mara, N.A.; Misra, A.; Uberuaga, B.P. Radiation Damage Tolerant Nanomaterials. Mater. Today 2013, 16, 443–449. [Google Scholar] [CrossRef]
- Yang, L.X.; Zheng, S.J.; Zhou, Y.T.; Zhang, J.; Wang, Y.Q.; Jiang, C.B.; Mara, N.A.; Beyerlein, I.J.; Ma, X.L. Effects of He Radiation on Cavity Distribution and Hardness of Bulk Nanolayered Cu-Nb Composites. J. Nucl. Mater. 2017, 487, 311–316. [Google Scholar] [CrossRef]
- Yu, K.Y.; Liu, Y.; Fu, E.G.; Wang, Y.Q.; Myers, M.T.; Wang, H.; Shao, L.; Zhang, X. Comparisons of Radiation Damage in He Ion and Proton Irradiated Immiscible Ag/Ni Nanolayers. J. Nucl. Mater. 2013, 440, 310–318. [Google Scholar] [CrossRef]
- Chen, F.; Tang, X.; Huang, H.; Liu, J.; Li, H.; Qiu, Y.; Chen, D. Surface Damage and Mechanical Properties Degradation of Cr/W Multilayer Films Irradiated by Xe20+. Appl. Surf. Sci. 2015, 357, 1225–1230. [Google Scholar] [CrossRef]
- Demkowicz, M.J.; Hoagland, R.G.; Hirth, J.P. Interface Structure and Radiation Damage Resistance in Cu-Nb Multilayer Nanocomposites. Phys. Rev. Lett. 2008, 100, 136102. [Google Scholar] [CrossRef]
- Misra, A.; Demkowicz, M.J.; Zhang, X.; Hoagland, R.G. The Radiation Damage Tolerance of Ultra-High Strength Nanolayered Composites. Jom 2007, 59, 62–65. [Google Scholar] [CrossRef]
- Fu, E.G.; Carter, J.; Swadener, G.; Misra, A.; Shao, L.; Wang, H.; Zhang, X. Size Dependent Enhancement of Helium Ion Irradiation Tolerance in Sputtered Cu/V Nanolaminates. J. Nucl. Mater. 2009, 385, 629–632. [Google Scholar] [CrossRef]
- Demkowicz, M.J.; Wang, Y.Q.; Hoagland, R.G.; Anderoglu, O. Mechanisms of He Escape during Implantation in CuNb Multilayer Composites. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 261, 524–528. [Google Scholar] [CrossRef]
- Fu, E.G.; Li, N.; Misra, A.; Hoagland, R.G.; Wang, H.; Zhang, X. Mechanical Properties of Sputtered Cu/V and Al/Nb Multilayer Films. Mater. Sci. Eng. A 2008, 493, 283–287. [Google Scholar] [CrossRef]
- Demkowicz, M.J.; Bhattacharyya, D.; Usov, I.; Wang, Y.Q.; Nastasi, M.; Misra, A. The Effect of Excess Atomic Volume on He Bubble Formation at Fcc--Bcc Interfaces. Appl. Phys. Lett. 2010, 97, 161903. [Google Scholar] [CrossRef]
- Li, N.; Mara, N.A.; Wang, Y.Q.; Nastasi, M.; Misra, A. Compressive Flow Behavior of Cu Thin Films and Cu/Nb Multilayers Containing Nanometer-Scale Helium Bubbles. Scr. Mater. 2011, 64, 974–977. [Google Scholar] [CrossRef]
- Fu, E.G.; Misra, A.; Wang, H.; Shao, L.; Zhang, X. Interface Enabled Defects Reduction in Helium Ion Irradiated Cu/V Nanolayers. J. Nucl. Mater. 2010, 407, 178–188. [Google Scholar] [CrossRef]
- Sen, H.S.; Polcar, T. Vacancy-Interface-Helium Interaction in Zr-Nb Multi-Layer System: A First-Principles Study. J. Nucl. Mater. 2019, 518, 11–20. [Google Scholar] [CrossRef]
- Sen, H.S.; Polcar, T. Helium Migration in Zr-Nb Multilayers under Electric Field. J. Nucl. Mater. 2021, 555, 153133. [Google Scholar] [CrossRef]
- Daghbouj, N.; Sen, H.S.; Č’ižek, J.; Lorinč’ik, J.; Karl’ik, M.; Callisti, M.; Čech, J.; Havránek, V.; Li, B.; Krsjak, V.; et al. Characterizing Heavy Ions-Irradiated Zr/Nb: Structure and Mechanical Properties. Mater. Des. 2022, 219, 110732. [Google Scholar] [CrossRef]
- Bordulev, I.; Kudiiarov, V.; Svyatkin, L.; Syrtanov, M.; Stepanova, E.; Č’ižek, J.; Vlček, M.; Li, K.; Laptev, R.; Lider, A. Positron Annihilation Spectroscopy Study of Defects in Hydrogen Loaded Zr-1Nb Alloy. J. Alloys Compd. 2019, 798, 685–694. [Google Scholar] [CrossRef]
- Slugen, V.; Degmova, J.; Sojak, S.; Petriska, M.; Noga, P.; Krsjak, V. On the Limitations of Positron Annihilation Spectroscopy in the Investigation of Ion-Implanted FeCr Samples. Metals 2021, 11, 1689. [Google Scholar] [CrossRef]
- Krsjak, V.; Degmova, J.; Sojak, S.; Slugen, V. Effects of Displacement Damage and Helium Production Rates on the Nucleation and Growth of Helium Bubbles--Positron Annihilation Spectroscopy Aspects. J. Nucl. Mater. 2018, 499, 38–46. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM--The Stopping and Range of Ions in Matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Konobeyev, A.Y.; Fischer, U.; Korovin, Y.A.; Simakov, S.P. Evaluation of Effective Threshold Displacement Energies and Other Data Required for the Calculation of Advanced Atomic Displacement Cross-Sections. Nucl. Energy Technol. 2017, 3, 169–175. [Google Scholar] [CrossRef]
- Vehanen, A.; Saarinen, K.; Hautojärvi, P.; Huomo, H. Profiling Multilayer Structures with Monoenergetic Positrons. Phys. Rev. B 1987, 35, 4606. [Google Scholar] [CrossRef]
- Syrtanov, M.; Garanin, G.; Kashkarov, E.; Pushilina, N.; Kudiiarov, V.; Murashkina, T. Laboratory X-ray Diffraction Complex for in Situ Investigations of Structural Phase Evolution of Materials under Gaseous Atmosphere. Metals 2020, 10, 447. [Google Scholar] [CrossRef]
- Kuznetsov, P.V.; Mironov, Y.P.; Tolmachev, A.I.; Bordulev, Y.S.; Laptev, R.S.; Lider, A.M.; Korznikov, A.V. Positron Spectroscopy of Defects in Submicrocrystalline Nickel after Low-Temperature Annealing. Phys. Solid State 2015, 57, 219–228. [Google Scholar] [CrossRef]
- Liang, X.Q.; Wang, Y.Q.; Zhao, J.T.; Wu, S.H.; Feng, X.B.; Wu, K.; Zhang, J.Y.; Liu, G.; Sun, J. Size-Dependent Microstructure Evolution and Hardness of He Irradiated Nb/Zr Multilayers under Different Ion Doses. Mater. Sci. Eng. A 2019, 764, 138259. [Google Scholar] [CrossRef]
- Ungar, T. Microstructural Parameters from X-Ray Diffraction Peak Broadening. Scr. Mater. 2004, 51, 777–781. [Google Scholar] [CrossRef]
- An, B.; Wang, Y.; Wu, K.; Zhang, J.; Liu, G.; Sun, J. Interface-Controlled Mechanical Properties and Irradiation Hardening in Nanostructured Cr75Al25/Zr Multilayers. Mater. Sci. Eng. A 2022, 850, 143558. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laptev, R.; Stepanova, E.; Pushilina, N.; Kashkarov, E.; Krotkevich, D.; Lomygin, A.; Sidorin, A.; Orlov, O.; Uglov, V. The Microstructure of Zr/Nb Nanoscale Multilayer Coatings Irradiated with Helium Ions. Coatings 2023, 13, 193. https://doi.org/10.3390/coatings13010193
Laptev R, Stepanova E, Pushilina N, Kashkarov E, Krotkevich D, Lomygin A, Sidorin A, Orlov O, Uglov V. The Microstructure of Zr/Nb Nanoscale Multilayer Coatings Irradiated with Helium Ions. Coatings. 2023; 13(1):193. https://doi.org/10.3390/coatings13010193
Chicago/Turabian StyleLaptev, Roman, Ekaterina Stepanova, Natalia Pushilina, Egor Kashkarov, Dmitriy Krotkevich, Anton Lomygin, Alexey Sidorin, Oleg Orlov, and Vladimir Uglov. 2023. "The Microstructure of Zr/Nb Nanoscale Multilayer Coatings Irradiated with Helium Ions" Coatings 13, no. 1: 193. https://doi.org/10.3390/coatings13010193
APA StyleLaptev, R., Stepanova, E., Pushilina, N., Kashkarov, E., Krotkevich, D., Lomygin, A., Sidorin, A., Orlov, O., & Uglov, V. (2023). The Microstructure of Zr/Nb Nanoscale Multilayer Coatings Irradiated with Helium Ions. Coatings, 13(1), 193. https://doi.org/10.3390/coatings13010193