Finite Element Simulation of Stainless Steel Porous Scaffolds for Selective Laser Melting (SLM) and Its Experimental Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Finite Element Models
2.3. Manufacture of Porous Scaffolds
3. Results and Discussion
3.1. Finite Element Analysis
3.2. Simulation Numerical Results Discussion
3.3. Compression Experimental Analysis
3.4. Microstructure Analysis
3.5. Experimental Analysis of Heat Treatment
4. Conclusions
- (1)
- The deformation at the upper end of the specimens is higher, and the deformation limit of the scaffold is higher than that of deformation limit of natural bone. The porous scaffolds with a diameter of 300 μm can effectively relieve the local stress concentration. With the increase in porosity, the effective strain presents a gradient rise. In addition, the one with the pore size of 300 μm is more suitable for the load-bearing role of the human bone implant.
- (2)
- The prepared porous scaffold has a dense and uniform structure, and the forming part is mainly composed of columnar crystals with the same growth direction. The columnar crystal arrangement has the same directionality and uniform distribution, and the periphery is densely distributed with fine equiaxed crystals. Due to the high temperature and high gradient solidification characteristics of the rapid molding technology, the resulting structure is fine, uniform, and the microstructure is arranged regularly.
- (3)
- Through finite element simulation analysis, the reasonable pore diameter of the porous scaffold is obtained, and the optimized pore size of the porous scaffold is obtained. The elastic modulus of the porous scaffold with a pore size of 300 μm isclosest to the elastic modulus required by human bone. Therefore, the comprehensive mechanical properties of the scaffold with the pore size of 300 μm arethe best match with that of human bone. The identification of the porous scaffold that is more suitable for the load-bearing effects of human bone can guide the follow-up research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huan, Z.J.; Chu, H.K.; Liu, H.B.; Yang, J.; Sun, D. Engineered bone scaffolds with Dielectrophoresis-based patterning using 3D printing. Biomed. Microdevices 2017, 19, 102. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.Y.; Bartlo, P.J. Rheological characterization of polymer/ceramic blends for 3D printing of bone scaffolds. Polym. Test. 2018, 68, 365. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.P.; Tan, Y.J.; Chow, C.S.L.; Tor, S.B.; Yeong, W.Y. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater. Sci. Eng. C 2017, 76, 1328–1343. [Google Scholar] [CrossRef] [PubMed]
- Henriques, B.; Pinto, P.; Silva, F.S.; Fredel, M.C.; Fabris, D.; Souza, J.C.M.; Carvalho, O. On the mechanical properties of monolithic and laminated nano-ceramic resin structures obtained by laser printing. Compos. Part B Eng. 2018, 141, 76–83. [Google Scholar] [CrossRef]
- Gülcan, O.; Simsek, U.; Cokgunlu, O.; Özdemir, M.; Şendur, P.; Yapici, G.G. Effect of Build Parameters on the Compressive Behavior of Additive Manufactured CoCrMo Lattice Parts Based on Experimental Design. Metals 2022, 12, 1104. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, X.; Yin, S.; Liu, L.; Liu, X.; Zhao, G.; Ma, W.; Qi, W.; Ren, Z.; Liao, H.; et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater. Sci. Eng. C 2019, 106, 110289. [Google Scholar] [CrossRef] [PubMed]
- Tsopanos, S.; Mines, R.A.W.; Mckown, S.; Shen, Y.; Cantwell, W.J.; Brooks, W.; Sutcliffe, C.J. The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Microlattice Structures. J. Manuf. Sci. Eng. 2010, 132, 041011. [Google Scholar] [CrossRef]
- Li, L.; Shi, J.; Zhang, K.; Yang, L.; Yu, F.; Zhu, L.; Liang, H.; Wang, X.; Jiang, Q. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J. Orthop. Transl. 2019, 19, 94–105. [Google Scholar] [CrossRef]
- Ouyang, P.; Dong, H.; He, X.; Cai, X.; Wang, Y.; Li, J.; Li, H.; Jin, Z. Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth. Mater. Des. 2019, 183, 108151. [Google Scholar] [CrossRef]
- Wang, L.; Kang, J.; Sun, C.; Li, D.; Cao, Y.; Jin, Z. Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants. Mater. Des. 2017, 133, 62–68. [Google Scholar] [CrossRef]
- Cuadrado, A.; Yánez, A.; Martel, O.; Deviaene, S.; Monopoli, D. Influence of load orientation and of types of loads on the mechanical properties of porous Ti6Al4V biomaterials. Mater. Des. 2017, 135, 309–318. [Google Scholar] [CrossRef]
- Arjunan, A.; Demetriou, M.; Baroutaji, A.; Wang, C. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. J. Mech. Behav. Biomed. Mater. 2019, 102, 103517. [Google Scholar] [CrossRef]
- Rüdrich, U.; Lasgorceix, M.; Champion, E.; Pascaud-Mathieu, P.; Damia, C.; Chartier, T.; Brie, J.; Magnaudeix, A. Pre-osteoblast cell colonization of porous silicon substituted hydroxyapatite bioceramics: Influence of microporosity and macropore design. Mater. Sci. Eng. C 2019, 97, 510–528. [Google Scholar] [CrossRef]
- Van Bael, S.; Chai, Y.C.; Truscello, S.; Moesen, M.; Kerckhofs, G.; Van Oosterwyck, H.; Kruth, J.-P.; Schrooten, J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012, 8, 2824–2834. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Z.; Wang, D.; Zeng, X. Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L Stainless Steel. Opt. Laser Technol. 2013, 45, 209–216. [Google Scholar] [CrossRef]
- Jiang, H.-Z.; Li, Z.-Y.; Feng, T.; Wu, P.-Y.; Chen, Q.-S.; Feng, Y.-L.; Chen, L.-F.; Hou, J.-Y.; Xu, H.-J. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting. Acta Metall. Sin. Engl. Lett. 2020, 34, 495–510. [Google Scholar] [CrossRef]
- Zhang, J.W.; Xiao, D.Q.; He, X.; Shi, F.; Luo, P.F.; Zhi, W.; Duan, K.; Weng, J. A novel porous bioceramic scaffold by accumulating hydroxyapatite spheres for large bone tissue engineering. III: Characterization of porous structure. Mater. Sci. Eng. C 2018, 89, 223. [Google Scholar] [CrossRef]
- Yao, Q.Q.; Liu, Y.X.; Selvaratnam, B.; Koodali, R.T.; Sun, H.L. Mesoporous silicate nano-particles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue en-gineering. J. Control. Release 2018, 279, 69. [Google Scholar] [CrossRef]
- Tang, Q.G.; Piard, C.; Lin, J.; Nan, K.; Guo, T.; Caccamese, J.; Fisher, J.; Chen, Y. Imaging stem cell dis-tribution, growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography. Biotechnol. Bioeng. 2018, 115, 257. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Wang, J.D.; Zou, L.Y.; Jin, L.; Wang, Z.L.; Li, Y. A three-dimensional hydro-xyapatite/polyacrylonitrile composite scaffold designed for bone tissue engineering. RSC Adv. 2018, 8, 1730–1736. [Google Scholar] [CrossRef]
- Xie, X.; Wang, X.; Yao, D.; Hung, L.; Qin, L. Imparied bone healing in rabbits with steroid-induced osteonecrosis. J. Bone Jt. Surg. 2011, 93, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Molla, S.; Katti, K.S.; Katti, D.R. Multiscale models of degradation and healing of bone tissue engineering nanocomposite scaffolds. J. Nanomech. Micr. 2017, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Kang, Y.J.; Li, D.; Yu, K.; Xiao, T.; Wang, Q.Y.; Deng, Y.; Fang, H.; Jiang, D.; Zhang, Y. Microstructure, mechanical properties and corrosion behavior of porous Mg-6 wt.% Zn scaffolds for bone tissue engineering. J. Mater. Eng. Perform. 2018, 27, 970. [Google Scholar] [CrossRef]
- Coffigniez, M.; Gremillard, L.; Balvay, S.; Lachambre, J.; Adrien, J.; Boulnat, X. Direct-ink writing of strong and biocompatible titanium scaffolds with bimodal interconnected porosity. Addit. Manuf. 2021, 39, 101859. [Google Scholar] [CrossRef]
- Shahzamanian, M.M.; Shahrjerdi, A.; Sahari, B.B.; Wu, P.D. Steady-State Thermal Analysis of Functionally Graded Rotating Disks Using Finite Element and Analytical Methods. Materials 2022, 15, 5548. [Google Scholar] [CrossRef] [PubMed]
- Shahzamanian, M.M.; Thomsen, C.; Partovi, A.; Xu, Z.T.; Wu, P.D. The effect of superimposed hydrostatic pressure on shear decohesion in round bar tensile specimens. Int. J. Fracture 2022, 233, 179–194. [Google Scholar] [CrossRef]
- Shahzamanian, M.M.; Thomsen, C.; Partovi, A.; Xu, Z.T.; Wu, P.D. Numerical Study about the Influence of Superimposed Hydrostatic Pressure on Shear Damage Mechanism in Sheet Metals. Metals 2021, 11, 1193. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, S.; Pan, Y.; Li, J.; Li, T. Mechanism Study of the Effect of Selective Laser Melting Energy Density on the Microstructure and Properties of Formed Renewable Porous Bone Scaffolds. Metals 2022, 12, 1712. [Google Scholar] [CrossRef]
- Zhang, K.; Fan, Y.B.; Dunne, N.; Li, X.M. Effect of microporosity on scaffolds for bone tissue engineering. Regen. Biomater. 2018, 5, 115. [Google Scholar] [CrossRef]
- Arabi, N.; Zamanian, A.; Rashvand, S.N.; Ghorbani, F. The tunable porous structure of gelatin-bioglass nanocomposite scaffolds for bone tissue engineering applications: Physicochemical, mechanical, and in vitro properties. Macromol. Mater. Eng. 2018, 303, 1700539. [Google Scholar] [CrossRef]
- Arahira, T.; Maruta, M.; Matsuya, S.; Todo, M. Development and characterization of a novel porous beta-TCP scaffold with a three-dimensional PLLA network structure for use in bone tissue engineering. Mater. Lett. 2015, 152, 148. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, S.; Ren, G.; Pan, Y.; Li, J. Optimization of Structural and Processing Parameters for Selective Laser Melting of Porous 316L Bone Scaffolds. Materials 2022, 15, 5896. [Google Scholar] [CrossRef] [PubMed]
Brand Name | C | Si | Mn | P | S | Ni | Cr | Mo |
---|---|---|---|---|---|---|---|---|
00Cr17Ni14Mo2 | ≤0.03 | ≤1.00 | ≤2.00 | ≤0.035 | ≤0.03 | 12.0–15.0 | 16.0–18.0 | 2.0–3.0 |
Distinguish | Ys Yield Strength (MPa) | Ts Tensile Strength (MPa) | El Elongation (%) | Hv Vickers Hardness | Remarks |
---|---|---|---|---|---|
Standard | ≥205 | ≥520 | ≥40 | ≤200 | 2 B/1.5 t |
SLM material | 310 | 620 | 53 | 155 |
Aperture Size (μm) | Compressive Strength/MPa | Modulus of Elasticity (GPa) |
---|---|---|
300 | 514 | 10.38 |
400 | 488 | 6.38 |
500 | 465 | 5.56 |
Aperture Size (μm) | Before Heat Treatment (HV) | After Heat Treatment (HV) |
---|---|---|
300 | 276 | 224 |
400 | 268 | 224 |
500 | 262 | 220 |
Solid | 258 | 220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Ma, H.; Song, X.; Zhang, S.; Hu, X.; Meng, Z. Finite Element Simulation of Stainless Steel Porous Scaffolds for Selective Laser Melting (SLM) and Its Experimental Investigation. Coatings 2023, 13, 134. https://doi.org/10.3390/coatings13010134
Xu S, Ma H, Song X, Zhang S, Hu X, Meng Z. Finite Element Simulation of Stainless Steel Porous Scaffolds for Selective Laser Melting (SLM) and Its Experimental Investigation. Coatings. 2023; 13(1):134. https://doi.org/10.3390/coatings13010134
Chicago/Turabian StyleXu, Shubo, Hailong Ma, Xiujuan Song, Sen Zhang, Xinzhi Hu, and Zixiang Meng. 2023. "Finite Element Simulation of Stainless Steel Porous Scaffolds for Selective Laser Melting (SLM) and Its Experimental Investigation" Coatings 13, no. 1: 134. https://doi.org/10.3390/coatings13010134
APA StyleXu, S., Ma, H., Song, X., Zhang, S., Hu, X., & Meng, Z. (2023). Finite Element Simulation of Stainless Steel Porous Scaffolds for Selective Laser Melting (SLM) and Its Experimental Investigation. Coatings, 13(1), 134. https://doi.org/10.3390/coatings13010134