Special Issue: New Challenges in Thin-Film Nanocomposite Membranes
- The preparation of stable nanocomposite TFC membranes.
- The effect of nanoparticles on membrane properties such as water permeability, selectivity and fouling behavior.
- The description of the mechanism of action of nanoparticles in view of transport, selectivity and antifouling properties.
- Theoretical aspects and simulation of water–salt transport in nanoparticle-modified TFC membranes.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.; Kim, M.; Park, B.; Kim, S. Changes and Characteristics of Polyamide Reverse Osmosis Membrane Due to Chlorine Attack. Desal. Water Treatm. 2019, 54, 923–928. [Google Scholar] [CrossRef]
- Akther, N.; Phuntsho, S.; Chen, Y.; Ghaffour, N.; Shon, H.K. Recent Advances in Nanomaterial-Modified Thin Film Composite Membranes for Forward Osmosis Processes. J. Membr. Sci. 2019, 584, 20–45. [Google Scholar] [CrossRef]
- Li, D.; Yan, Y.; Wang, H. Recent Advances in Polymer and Polymer Composite Membranes for Reverse Osmosis and Forward Osmosis. Prog. Polym. Sci. 2016, 61, 104–155. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Nanoparticles in Reverse Osmosis Membranes for Desalination: A State of the Art Review. Desalination 2020, 475, 114171. [Google Scholar] [CrossRef]
- Pang, L.; Meier-Haack, J.; Huang, S.; Qi, L.; Cui, H.; Ruan, S.; Zeng, Y.-J. Antibiofouling Thin-Film Nanocomposite Membranes for Sustainable Water Purification. Adv. Sustain. Syst. 2021, 5, 2000279. [Google Scholar] [CrossRef]
- Takeuchi, K.; Takizawa, Y.; Kitazawa, H.; Fujii, M.; Hosaka, K.; Ortiz-Medina, J.; Morales-Gomez, A.; Cruz-Silva, R.; Fujishige, M.; Akuzaw, N.; et al. Salt Rejection Behavior of Carbon Nanotube-Polyamide Nanocomposite Reverse Osmosis Membranes in Several Salt Solutions. Desalination 2018, 443, 165–171. [Google Scholar] [CrossRef]
- Bano, S.; Mahmood, A.; Kim, S.-J.; Lee, K.-H. Graphene Oxide Modified Polyamide Nanofiltration Membrane with Improved Flux and Antifouling Properties. J. Mater. Chem. A 2015, 3, 2065–2071. [Google Scholar] [CrossRef]
- Seyedpour, S.F.; Rahimpour, A.; Shamsabadi, A.A.; Soroush, M. Improved Performance and Antifouling Properties of Thin-Film Composite Polyamide Membranes Modified with Nano-Sized Bactericidal Graphene Quantum Dots for Forward Osmosis. Chem. Eng. Res. Des. 2018, 139, 321–334. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Yuan, H.-G.; Li, Q.; Tang, Y.-H.; Zhang, Q.; Qian, W.; van der Bruggen, B.; Wang, X. Ion-Responsive Channels of Zwitterion-Carbon Nanotube Membrane for Rapid Water Permeation and Ultrahigh Mono-/Multivalent Ion Selectivity. ACS Nano 2015, 9, 7488–7496. [Google Scholar] [CrossRef]
- Urper-Bayram, G.M.; Bossa, N.; Warsinger, D.M.; Koyunc, I.; Wiesner, M. Comparative Impact of SiO2 and TiO2 Nanofillers on the performance of Thin-Film Nanocomposite Membranes. J. Appl. Polym. Sci. 2020, 137, 49328. [Google Scholar] [CrossRef]
- Ma, N.; Wei, J.; Liao, R.; Tang, C.Y. Zeolite-Polyamide Thin film Nanocomposite Membranes: Towards Enhanced Performance for Forward Osmosis. J. Membr. Sci. 2012, 405, 149–157. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Yuan, H.-G.; Liu, Y.-Y.; Ren, D.; Su, Y.-C.; Wang, X. Metal-Organic Framework Nanocomposite Thin Films with Interfacial Bindings and Self-Standing Robustness for High Water Flux and Enhanced Ion Selectivity. ACS Nano 2018, 12, 9253–9265. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, S.; Tian, L.; Zhang, J.; Su, B.; Hu, M.Z. Covalent Organic Frameworks (COFs)-Incorporated Thin film Nanocomposite (TFN) Membranes for High-flux Organics Solvent Nanofiltration (OSN). J. Membr. Sci. 2019, 572, 520–531. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.J.; Rahbari-Sisakht, M.; Ilbeygi, H.; Rana, D.; Matsuura, T. Synthesis, Modification and Optimization of Titanate Nanotubes-Polyamide Thin Film Nanocomposite Membrane for Forward Osmosis (Fo) Application. Chem. Eng. J. 2015, 281, 243–251. [Google Scholar] [CrossRef]
- Ghanbari, M.; Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Ismail, A.F. Synthesis and Characterization of Novel Thin Film Nanocomposite (TFN) Membranes Embedded with Halloysite Nanotubes (HNTs) for Water Desalination. Desalination 2015, 358, 33–41. [Google Scholar] [CrossRef]
- Kedchaikulrat, P.; Vankelecom, I.F.J.; Faungnawakij, K.; Klaysom, C. Effects of Colloidal Tio2 and Additives on the Interfacial Polymerization of Thin Film Nanocomposite Membranes. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 125046. [Google Scholar] [CrossRef]
- Quezada, R.; Quintero, Y.; Salgado, J.C.; Estay, H.; García, A. Understanding the Phenomenon of Copper Ions Release from Copper-Modified TFC Membranes: A Mathematical and Experimental Methodology Using Shrinking Core Model. Nanomaterials 2020, 10, 1130. [Google Scholar] [CrossRef] [PubMed]
- Mayyahi, A.A.; Deng, B. Efficient Water Desalination Using Photo-Responsive ZnO Polyamide Thin Film Nanocomposite Membrane. Environ. Chem. Lett. 2018, 16, 1469–1475. [Google Scholar] [CrossRef]
- Park, S.-H.; Kim, S.H.; Park, S.-J.; Ryoo, S.; Woo, K.; Lee, J.S.; Kim, T.-S.; Park, H.-D.; Park, H.; Park, Y.-I.; et al. Direct Incorporation of Silver Nanoparticles onto Thin-Film Composite Membranes Via Arc Plasma Deposition for Enhanced Antibacterial and Permeation Performance. J. Membr. Sci. 2016, 513, 226–235. [Google Scholar] [CrossRef]
- Ben-Sasson, M.; Lu, X.; Nejati, S.; Jaramillo, H.; Elimelech, M. In Situ Surface Functionalization of Reverse Osmosis Membranes with Biocidal Copper Nanoparticles. Desalination 2016, 388, 1–8. [Google Scholar] [CrossRef]
- Rastgar, M.; Shakeri, A.; Bozorg, A.; Salehi, H.; Saadattalab, V. Impact of Nanoparticles Surface Characteristics on Pore Structure and Performance of Forward Osmosis Membranes. Desalination 2017, 421, 179–189. [Google Scholar] [CrossRef]
- Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef] [PubMed]
- Jones-Marambio, C.; Hoek, E.V. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications. Water Res. 2008, 42, 4591–4602. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier-Haack, J. Special Issue: New Challenges in Thin-Film Nanocomposite Membranes. Coatings 2022, 12, 1169. https://doi.org/10.3390/coatings12081169
Meier-Haack J. Special Issue: New Challenges in Thin-Film Nanocomposite Membranes. Coatings. 2022; 12(8):1169. https://doi.org/10.3390/coatings12081169
Chicago/Turabian StyleMeier-Haack, Jochen. 2022. "Special Issue: New Challenges in Thin-Film Nanocomposite Membranes" Coatings 12, no. 8: 1169. https://doi.org/10.3390/coatings12081169
APA StyleMeier-Haack, J. (2022). Special Issue: New Challenges in Thin-Film Nanocomposite Membranes. Coatings, 12(8), 1169. https://doi.org/10.3390/coatings12081169