The Influence of Anion-Stripped MIL-101(Cr) Dispersed in Thin-Film Polyvinyl Alcohol Membrane Matrix on the Methylene Blue Dye Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of MOFs and Preparation of NF Membrane
2.2.1. Exchanging Fluoride Ions with Chloride Ions in M101 Structure
2.2.2. Preparation of MOF/PVA NF Membranes
2.3. Characterization
2.4. NF Performance Evaluation
3. Results and Discussion
3.1. XRD Analysis of M101 and M101Cl
3.2. FT-IR Analysis of M101 and M101Cl
3.3. MOFs and MOF Loaded Membranes Structure and Morphology
3.4. The Hydrophilicity and Surface Charge of the Membranes
3.5. Water Permeation and Dye Rejection of Membranes Filled with Different Amounts of M101 and M101Cl
3.6. Evaluation of Membranes Resistance, Antifouling Property and Cleaning Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santos, D.H.; Duarte, J.L.S.; Tavares, M.G.R.; Tavares, M.G.; Friedrich, L.C.; Meili, L.; Pimentel, W.R.O.; Tonholo, J.; Zanta, C. Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chem. Eng. Proc. Proc. Int. 2020, 153, 107940. [Google Scholar] [CrossRef]
- Long, Q.; Zhang, Z.; Wang, G.Q.Z.; Chen, Y.; Liu, Z.Q. Fabrication of Chitosan Nanofiltration Membranes by the Film Casting Strategy for Effective Removal of Dyes/Salts in Textile Wastewater. ACS Sustain. Chem. Eng. 2020, 8, 2512–2522. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Zou, J.; Guo, H. N-TiO2-Coated SiC Foam for the Treatment of Dyeing Wastewater under Blue Light LED Irradiation. Coatings 2022, 12, 585. [Google Scholar] [CrossRef]
- Keharia, H.; Madamwar, D. Textile and Dye Effluent. In Concise Encyclopedia of Bioresource Technology; Pandey, A., Ed.; The Haworth Press: Binghamton, NY, USA, 2004; pp. 167–175. [Google Scholar]
- Luna de, L.A.V.; da Silva, T.H.G.; Nogueirab, R.F.P.; Kummrow, F.; Umbuzeiro, G.A. Aquatic toxicity of dyes before and after photo-Fenton treatment. J. Hazard. Mater. 2014, 276, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Punzi, M.; Nilsson, F.; Anbalagan, A.; Svensson, B.M.; Jönsson, K.; Mattiasson, B.; Jonstrup, M. Combined anaerobic–ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity. J. Hazard. Mater. 2015, 292, 52–60. [Google Scholar] [CrossRef]
- Deng, C.; Liu, J.; Zhou, W.; Zhang, Y.K.; Du, K.F.; Zhao, Z.M. Fabrication of spherical cellulose/carbon tubes hybrid adsorbent anchored with welan gum polysaccharide and its potential in adsorbing MB. Chem. Eng. J. 2012, 200–202, 452–458. [Google Scholar]
- Russo, V.; Masiello, D.; Trifuoggi, M.; Serio, M.D.; Tesser, R. Design of an adsorption column for methylene blue abatement over silica: From batch to continuous modeling. Chem. Eng. J. 2016, 302, 287–295. [Google Scholar] [CrossRef]
- Bing-Jyh, L.; Keng-Ta, L.; Yi-Ming, K. Cheng-Hsien Tsai, Preparation of High-Transparency, Superhydrophilic Visible Photo-Induced Photocatalytic Film via a Rapid Plasma-Modification Process. Coatings 2021, 11, 784. [Google Scholar] [CrossRef]
- Alardhi, S.M.; Albayati, T.M.; Alrubaye, J.M. A hybrid adsorption membrane process for removal of dye from synthetic and actual wastewater. Chem. Eng. Proc. Proc. Int. 2020, 157, 108113. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Y.; Moutinho, J.; Shao, J.; Zydney, A.L.; He, Y. Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes. J. Hazard. Mater. 2015, 284, 58–64. [Google Scholar] [CrossRef]
- Yu, L.; Deng, J.; Wang, H.; Liu, J.; Zhang, Y. Improved salts transportation of a positively charged loose nanofiltration membrane by introduction of poly(ionic liquid) functionalized hydrotalcite nanosheets. ACS Sustain. Chem. Eng. 2016, 4, 3292–3304. [Google Scholar] [CrossRef]
- Zhang, R.; Ji, S.; Wang, N.; Wang, L.; Zhang, G.; Li, J.R. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes. Angew. Chem. Int. Ed. 2014, 53, 9775–9779. [Google Scholar] [CrossRef] [PubMed]
- Hafiz, M.; Hawari, A.H.; Alfahel, R.; Hassan, M.K.; Altaee, A. Comparison of nanofiltration with reverse osmosis in reclaiming tertiary treated municipal wastewater for irrigation purposes. Membranes 2021, 11, 32. [Google Scholar] [CrossRef]
- Nagy, E. Chapter 15—Nanofiltration. In Basic Equations of Mass Transport through a Membrane Layer, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 417–428. [Google Scholar]
- Wang, L.; Ji, S.; Wang, N.; Zhang, R.; Zhang, G.; Li, J.R. One-step self-assembly fabrication of amphiphilic hyperbranched polymer composite membrane from aqueous emulsion for dye desalination. J. Membr. Sci. 2014, 452, 143–151. [Google Scholar] [CrossRef]
- Feldman, D. Poly(Vinyl Alcohol) recent contributions to engineering and medicine. J. Compos. Sci. 2020, 4, 175. [Google Scholar] [CrossRef]
- Sun, X.; Luo, C.; Luo, F. Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength. Eur. Polym. J. 2020, 124, 109465. [Google Scholar] [CrossRef]
- Bozdoğan, A.; Aksakal, B.; Yargi, O. Film formation and mechanical properties of an opaque titanium dioxide and transparent polyvinyl alcohol composite films. Polym. Compos. 2019, 41, 939–950. [Google Scholar] [CrossRef]
- Gökpinar, S.; Ernst, S.J.; Hastürk, E.; Möllers, M.; Aita, I.E.; Wiedey, R.; Tannert, N.; Nießing, S.; Abdpour, S.; Schmitz, A.; et al. Air-Con metal–organic frameworks in binder composites for water adsorption heat transformation systems. Ind. Eng. Chem. Res. 2019, 58, 21493–21503. [Google Scholar] [CrossRef]
- Durmaz, B.U.; Aytac, A. Development and characterization of poly (vinyl alcohol) and casein blend films. Polym. Int. 2019, 68, 1140–1145. [Google Scholar] [CrossRef]
- Rynkowska, E.; Fatyeyeva, K.; Marais, S.; Kujawa, J.; Kujawski, W. Chemically and thermally cross-linked PVA-based membranes: Effect on swelling and transport behavior. Polymers 2019, 11, 1799. [Google Scholar] [CrossRef] [Green Version]
- Zornoz, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Metal-organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 2013, 166, 67–78. [Google Scholar] [CrossRef]
- Ariazadeh, M.; Farashi, Z.; Azizi, N.; Khajoue, M. Influence of functionalized SiO2 nanoparticles on the morphology and CO2/CH4 separation efficiency of Pebax-based mixed-matrix membranes. Korean J. Chem. Eng. 2020, 37, 295–306. [Google Scholar] [CrossRef]
- Setiawan, W.K.; Chiang, K.Y. Silica applied as mixed matrix membrane inorganic filler for gas separation: A review. Sustain. Environ. Res. 2019, 29, 32. [Google Scholar] [CrossRef] [Green Version]
- Nematollahi, M.H.; Saeedi Dehaghani, A.H.; Pirouzfar, V.; Akhondi, E. Mixed Matrix Membranes Comprising PMP Polymer with Dispersed Alumina Nanoparticle Fillers to Separate CO2/N2. Macromol. Res. 2016, 24, 782–792. [Google Scholar] [CrossRef]
- Hamad, F.A.; Mustafa, Y.H.; Muhammed, O.A.; Abdulaziz, K.A.; Mohammed, R.K. Electrospun Bilayer PAN/Chitosan Nanofiber Membranes Incorporated with Metal Oxide Nanoparticles for Heavy Metal Ion Adsorption. Coatings 2020, 10, 285. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Li, J.; Sun, F.; Dong, W. Ultrasonication favors TiO2 nano-particles dispersion in PVDF ultrafiltration membrane to effectively enhance membrane hydrophilicity and anti-fouling capability. Environ. Sci. Pollut. Res. Int. 2020, 27, 9503–9519. [Google Scholar] [CrossRef]
- Castruita-de León, G.; Yeverino-Miranda, C.Y.; Montes-Luna, A.d.J.; Meléndez-Ortiz, H.I.; Alvarado-Tenorio, G.; García-Cerda, L.A. Amine impregnated natural zeolite as filler in mixed matrix membranes for CO2/CH4 separation. J. Appl. Polym. Sci. 2019, 136, 48286. [Google Scholar] [CrossRef]
- Fan, H.; Wang, N.; Ji, S.; Yan, H.; Zhang, G. Nanodisperse ZIF-8/PDMS hybrid membranes for biobutanol permselective pervaporation. J. Mater. Chem. A 2014, 2, 20947–20957. [Google Scholar] [CrossRef]
- Fynn, W.; Prokopios, G.; Sergey, S.; Volkan, F.; Torsten, B.; Volker, A. Development and Characterization of Defect-Free Matrimid® Mixed-Matrix Membranes Containing Activated Carbon Particles for Gas Separation. Polymers 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; She, Q.; Huo, F.; Tang, C.Y. Metal-organic framework-based porous matrix membranes for improving mass transfer in forward osmosis membranes. J. Membr. Sci. 2015, 492, 392–399. [Google Scholar] [CrossRef]
- Campbell, J.; Davies, R.P.; Braddock, D.C.; Livingston, A.G. Improving the permeance of hybrid polymer/metal-organic framework (MOF) membranes for organic solvent nanofiltration (OSN)—Development of MOF thin films via interfacial synthesis. J. Mater. Chem. A 2015, 3, 9668–9674. [Google Scholar] [CrossRef]
- Sorribas, S.; Gorgojo, P.; Téllez, C.; Coronas, J.; Livingston, A.G. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 2013, 135, 15201–15208. [Google Scholar] [CrossRef] [PubMed]
- Echaide-Górriz, C.; Sorribas, S.; Téllez, C.; Coronas, J. MOF nanoparticles of MIL- 68(Al), MIL-101(Cr) and ZIF-11 for thin-film nanocomposite organic solvent nanofiltration membranes. RSC Adv. 2016, 6, 90417–90426. [Google Scholar] [CrossRef]
- Liu, X.T.; Space, B.; Chang, Z.; Bu, X.H. Metal-organic materials with triazine-based ligands: From structures to properties and applications. Coord. Chem. Rev. 2021, 427, 213518. [Google Scholar]
- Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble’, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042. [Google Scholar] [CrossRef]
- Zhao, T.; Jeremias, F.; Boldog, I.; Nguyen, B.; Henninger, S.K.; Janiak, C. High-Yield, Fluoride-Free and Large-Scale Synthesis of MIL-101(Cr)). Dalton Trans. 2015, 44, 16791–16801. [Google Scholar] [CrossRef] [Green Version]
- Kasinathan, P.; Seo, Y.K.; Shim, K.E.; Hwang, Y.K.; Lee, U.H.; Hwang, D.W.; Hong, D.Y.; Halligudi, S.B.; Chang, J.S. Effect of diamine in amine-functionalized MIL-101 for knoevenagel condensation. Bull. Korean Chem. Soc. 2011, 32, 2073–2075. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Yue, C.; Liu, B.; Zhang, M.; Li, Y.; Yang, W.; Lin, Y.; Pan, Y.; Sun, D.; Liu, Y. The encapsulation of POM clusters into MIL-101(Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization. Microporous Mesoporous Mater. 2021, 311, 110694. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, J.X.; Ding, L.L.; Liu, L.; Wang, S.M.; Han, Z.B. Palladium nanoparticles encapsulated in the MIL-101-Catalyzed one-pot reaction of alcohol oxidation and aldimine condensation. Inorg. Chem. 2018, 57, 13586–13593. [Google Scholar] [CrossRef]
- Mao, C.; Kudla, R.A.; Zuo, F.; Zhao, X.; Mueller, L.J.; Bu, X.; Feng, P. Anion stripping as a general method to create cationic porous framework with mobile anions. J. Am. Chem. Soc. 2014, 136, 7579–7582. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, C.; Qin, Y.; Yang, H.; Zhang, P.; Ye, F. Preparation of cationic MOFs with mobile anions by anion stripping to remove 2,4-D from water. Materials 2017, 10, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedev, O.I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G. First direct imaging of giant pores of the Metal-organic framework MIL-101. Chem. Mater. 2013, 17, e6525–e6527. [Google Scholar] [CrossRef]
- Salgın, S.; Salgın, U.; Tuzlalı, N. Determination of correct zeta potential of polyether sulfone membranes using CLC and AGC: Ionic environment effect. Desalination Water Treat. 2016, 57, 26031–26040. [Google Scholar] [CrossRef]
- Mutharasi, Y.; Kaleekkal, N.J.; Arumugham, T.; Banat, F.; Kapavarapu, M.S.R.S. Antifouling and photocatalytic properties of 2-D Zn/Al layered double hydroxide tailored low-pressure membranes. Chem. Eng. Proc. Proc. Int. 2020, 158, 108191. [Google Scholar] [CrossRef]
- Pereira, V.R.; Isloor, A.M.; Bhat, U.K.; Ismail, A.F.; Obaidd, A.; Funde, H.K. Preparation and performance studies of polysulfone-sulfated nano-titania (S-TiO2) nanofiltration membranes for dye removal. RSC Adv. 2015, 5, 53874. [Google Scholar] [CrossRef]
- Hu, Q.; Yu, J.; Liu, M.; Liu, A.; Dou, Z.; Yang, Y. A low cytotoxic cationic metal-organic framework carrier for controllable drug release. J. Med. Chem. 2014, 57, 5679–5685. [Google Scholar] [CrossRef]
- Llewellyn, P.L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon, L.; Weireld, G.D.; Chang, J.S.; Hong, D.Y.; Hwang, Y.K.; et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir 2008, 24, 7245–7250. [Google Scholar] [CrossRef]
- Huang, X.; Hu, Q.; Gao, L.; Hao, Q.; Wang, P.; Qin, D. Adsorption characteristics of metal-organic framework MIL-101(Cr) towards sulfamethoxazole and its persulfate oxidation regeneration. RSC Adv. 2018, 8, 27623. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, A.E.; El-Sayed, A.A.; Khalil, A.M. Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater. J. Polym. Eng. 2020, 40, 833–841. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; Li, Y.; Han, Q.; Zhang, T.; Zeng, K.; Zhao, C. Polyvinylidene fluoride membrane modified by tea polyphenol for dye removal. J. Mater. Sci. 2020, 55, 389–403. [Google Scholar] [CrossRef]
Membrane Label | % PVA Concentration | MOF Type | % MOF Loading |
---|---|---|---|
PM0.8 | 0.8% | - | 0% |
PM0.8-5 | 0.8% | M101Cl | 5% |
PM0.8-10 | 0.8% | M101Cl | 10% |
PM0.8-15 | 0.8% | M101Cl) | 15% |
PM0.8-15-2 | 0.8% | M101 | 15% |
PM0.8-20 | 0.8% | M101Cl | 20% |
Membrane Type | Membrane Contact Angle (°) |
---|---|
Support membrane | 74.38 |
PM0.8 | 36.78 |
PM0.8-5 | 75.61 |
PM0.8-10 | 35.22 |
PM0.8-15 | 38.55 |
PM0.8-15-2 | 44.48 |
PM0.8-20 | 21.90 |
Membrane Type | Type of Filler | Zeta Potential Value (mv) at PH 7.0 |
---|---|---|
PM0.8 | - | 11.72 |
PM0.8-15 | M101Cl | 17.21 |
PM0.8-15-2 | M101 | 11.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehdipour Ghazi, M.; Bagherian, A. The Influence of Anion-Stripped MIL-101(Cr) Dispersed in Thin-Film Polyvinyl Alcohol Membrane Matrix on the Methylene Blue Dye Separation. Coatings 2022, 12, 1148. https://doi.org/10.3390/coatings12081148
Mehdipour Ghazi M, Bagherian A. The Influence of Anion-Stripped MIL-101(Cr) Dispersed in Thin-Film Polyvinyl Alcohol Membrane Matrix on the Methylene Blue Dye Separation. Coatings. 2022; 12(8):1148. https://doi.org/10.3390/coatings12081148
Chicago/Turabian StyleMehdipour Ghazi, Mohsen, and Abbas Bagherian. 2022. "The Influence of Anion-Stripped MIL-101(Cr) Dispersed in Thin-Film Polyvinyl Alcohol Membrane Matrix on the Methylene Blue Dye Separation" Coatings 12, no. 8: 1148. https://doi.org/10.3390/coatings12081148
APA StyleMehdipour Ghazi, M., & Bagherian, A. (2022). The Influence of Anion-Stripped MIL-101(Cr) Dispersed in Thin-Film Polyvinyl Alcohol Membrane Matrix on the Methylene Blue Dye Separation. Coatings, 12(8), 1148. https://doi.org/10.3390/coatings12081148