Influence of Gradient Index and Pores on the Properties and Internal Stress of Continuous Transition Ceramic–Metal Coating
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Methods
2.2. Microstructure and Hardness Characterization
2.3. Finite Element Analysis (FEA) Modelling
2.4. Finite Element Analysis (FEA)
3. Results and Discussions
3.1. The Microstructure of DC and CT
3.2. Vickers Hardness of DC and CT
3.3. Thermal Stress Distribution of DC and S1
3.4. Thermal Stress Distribution of DC and S2
3.5. The Effect of Pores in the Coating on Thermal Stress
4. Conclusions
- (1)
- We conducted a Vickers hardness analysis of the coatings, and found that the traditional coating showed considerable hardness difference at the interface between the bonding coating and the ceramic coating, reaching 800 HV0.1. Meanwhile, for the continuous transition coating, the hardness value of the entire coating changed smoothly in the thickness direction.
- (2)
- Compared to the traditional coating, the continuous transition coating reduced the thermal mismatch between the bonding coating and the ceramic coating, which may improve the high temperature reliability of ceramic coatings.
- (3)
- The gradient index also had a greater impact on the stress distribution inside the coating. When the gradient index was 1.0, the stress distribution inside the coating was the gentlest, which is beneficial for prolonging the service life of the coating.
- (4)
- The porous coatings were modeled and simulated. It was found that the pores inside the coating can make smooth the stress change in the coating, and that the maximum stress of the entire coating exists in the bonding coating. The existence of pores can slightly alleviate the stress gap at the coating interface and extend the service life of the coating.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, P.Y.; Ma, Y.D.; Sun, W.W.; Yang, Y.; Zhang, C.; Cui, Y.H.; Wang, Y.W.; Dong, Y.C. Microstructure and properties of Al2O3–ZrO2–TiO2 composite coatings prepared by plasma spraying. Rare Met. 2021, 40, 1825–1834. [Google Scholar] [CrossRef]
- Guo, L.; Xin, H.; Zhang, Z.; Zhang, X.; Ye, F. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance. J. Adv. Ceram. 2020, 9, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.W.; Wei, Z.Y.; Zhang, L.Y.; Xing, Y.Z.; Zhang, Q. Low-thermal-conductivity thermal barrier coatings with a multi-scale pore design and sintering resistance following thermal exposure. Rare Met. 2020, 39, 352–367. [Google Scholar] [CrossRef]
- Deng, Z.Q.; Mao, J.; Liu, M.; Deng, C.M.; Ma, J.T. Regional characteristic of 7YSZ coatings prepared by plasma spray-physical vapor deposition technique. Rare Met. 2021, 40, 3308–3315. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Schmidt, A.; Scholz, A. The determination of the delamination resistance in thermal barrier coating system by four-point bending tests. Surf. Coat. Technol. 2006, 201, 744–754. [Google Scholar] [CrossRef]
- Kawasaki, A.; Watanabe, R. Thermal fracture behavior of metal/ceramic functionally graded materials. Eng. Fract. Mech. 2002, 69, 1713–1728. [Google Scholar] [CrossRef]
- Khor, K.A.; Gu, Y.W. Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings. Mater. Sci. Eng. A 2000, 277, 64–76. [Google Scholar] [CrossRef]
- Khor, K.; Dong, Z.; Gu, Y. Plasma sprayed functionally graded thermal barrier coatings. Mater. Lett. 1999, 38, 437–444. [Google Scholar] [CrossRef]
- Bäker, M.; Seiler, P. A guide to finite element simulations of thermal barrier coatings. J. Therm. Spray Technol. 2017, 26, 1146–1160. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Kang, H.S.; Zhou, Y.C.; He, L.M.; Lu, C. Intelligent discrimination of failure modes in thermal barrier coatings: Wavelet transform and neural network analysis of acoustic emission signals. Exp. Mech. 2015, 55, 321–330. [Google Scholar] [CrossRef]
- Zhang, X.; Watanabe, M.; Kuroda, S. Effects of residual stress on the mechanical properties of plasma-sprayed thermal barrier coatings. Eng. Fract. Mech. 2013, 110, 314–327. [Google Scholar] [CrossRef]
- Burov, A.; Fedorova, E. Modeling of interface failure in a thermal barrier coating system on Ni-based superalloys. Eng. Fail. Anal. 2021, 123, 105320. [Google Scholar] [CrossRef]
- Al Zoubi, W.; Kamil, M.P.; Fatimah, S.; Nashrah, N.; Ko, Y.G. Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Prog. Mater. Sci. 2020, 112, 100663. [Google Scholar] [CrossRef]
- Yang, S.J.; Song, W.J.; Dingwell, D.B.; He, J.; Guo, H.B. Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings. Rare Met. 2022, 41, 469–481. [Google Scholar] [CrossRef]
- Liu, M.J.; Zhang, G.; Lu, Y.H.; Han, J.; Li, G.; Li, C.-X.; Li, C.-J.; Yang, G. Plasma spray–physical vapor deposition toward advanced thermal barrier coatings: A review. Rare Met. 2020, 39, 479–497. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, Y.M.; Weng, W.X.; Liu, B.L.; Li, Q. Influence of pores on mechanical properties of plasma sprayed coatings: Case study of YSZ thermal barrier coatings. Ceramics International 2018, 44, S0272884218322971. [Google Scholar] [CrossRef]
- Sadowski, T.; Golewski, P. Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC). Comput. Mater. Sci. 2011, 50, 1326–1335. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Sun, X.G.; He, J.Q.; Pan, Z.Y.; Zhou, Y.; Wu, P.L. Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Mater. Des. 2011, 32, 36–47. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Wang, L.S.; Cai, H.N.; Li, G.R.; Chen, X.F.; Zhang, W.X. Dominant effect of oriented 2D pores on heat flux in lamellar structured thermal barrier coatings. Ceram. Int. 2019, 45, 17029–17039. [Google Scholar] [CrossRef]
- Widjaja, S.; Limarga, A.M.; Yip, T.H. Modeling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating. Thin Solid Film. 2003, 434, 216–227. [Google Scholar] [CrossRef]
- Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R. Processing glass–pyrochlore composites for nuclear waste encapsulation. J. Nucl. Mater. 2005, 341, 12–18. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Tietz, F.; Stoever, D. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides. J. Eur. Ceram. Soc. 2006, 26, 247–251. [Google Scholar] [CrossRef]
- Vaßen, R.; Traeger, F.; Stöver, D. New thermal barrier coatings based on pyrochlore/YSZ double-layer systems. Int. J. Appl. Ceram. Technol. 2004, 1, 351–361. [Google Scholar] [CrossRef]
- Wang, J.; Xue, H.; Wang, Y. Oxidation behavior of Ni-based superalloy GH738 in static air between 800 and 1000 °C. Rare Met. 2021, 40, 616–625. [Google Scholar] [CrossRef]
- Li, C.; Yuan, X.; Li, D.; Song, P.; Li, Z.; Huang, T.; Feng, T.; He, Y.; Zhai, R.; Li, Q.; et al. Test atmospheres affecting voids distribution on MCrAlY-bond coats for TBCs at 1050 °C. Corros. Sci. 2022, 195, 109967. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef]
- Clarke, D.R.; Oechsner, M.; Padture, N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012, 37, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Curry, N.; Tang, Z.; Markocsan, N.; Nylén, P. Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings—Thermal and lifetime performance. Surf. Coat. Technol. 2015, 268, 15–23. [Google Scholar] [CrossRef]
- Lee, K.I.; Wu, L.T.; Wu, R.T.; Xiao, P. Mechanisms and mitigation of volcanic ash attack on yttria stablized zirconia thermal barrier coatings. Surf. Coat. Technol. 2014, 260, 68–72. [Google Scholar] [CrossRef]
- Kawasaki, A.; Watanabe, R.; Yuki, M.; Nakanishi, Y.; Onabe, H. Effect of microstructure on thermal shock cracking of functionally graded thermal barrier coatings studied by burner heating test. Mater. Trans. JIM 1996, 37, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.F.; Li, Y.J.; Zheng, F.H.; Bian, X.; Wu, W.Y.; Yang, C.H. Characterization of CeO2 microspheres fabricated by an ultrasonic spray pyrolysis method. Rare Met. 2021, 40, 31–39. [Google Scholar] [CrossRef]
- Jung, Y.G.; Choi, S.C.; Oh, C.S.; Paik, U.G. Residual stress and thermal properties of zirconia/metal functionally graded materials fabricated by hot pressing. J. Mater. Sci. 1997, 32, 3841–3850. [Google Scholar] [CrossRef]
- Lee, J.D.; Ra, H.Y.; Hong, K.T.; Sur, S.K. Analysis of deposition phenomena and residual stress in plasma spray coatings. Surf. Coat. Technol. 1992, 56, 27–37. [Google Scholar] [CrossRef]
- Girolamo, G.D.; Blasi, C.; Schioppa, M. Microstructural, mechanical and thermal characteristics of zirconia-based thermal barrier coatings deposited by plasma spraying. Ceram. Int. 2015, 41, 11776–11785. [Google Scholar] [CrossRef]
- Braess, D.; Ming, P. A finite element method for nearly incompressible elasticity problems. Math. Comput. 2004, 74, 25–53. [Google Scholar] [CrossRef] [Green Version]
Parameters | BC (NiCoCrAlY) | 8YSZ |
---|---|---|
Density, ρ, kg/m3 | 7320 | 6037 |
Young modulus, E, GPa | 170 | 80 |
Poisson’s rate, ν | 0.25 | 0.23 |
Coefficient of thermal expansion, α, 10−6 m/K | 12.5 | 8.6 |
Heat capacity, C, J/(kg × K) | 501 | 500 |
Heat conductivity, λ, W/(m × K) | 4.3 | 1.5 |
Element | Cr | Co | W | Mo | Al | Ti | Fe |
---|---|---|---|---|---|---|---|
Wt% | 17.00–20.00 | 5.00–8.00 | 5.00–7.00 | 3.50–4.50 | 1.70–2.40 | 1.00–1.50 | <2.00 |
Parameters | Value of BC | Value of CT | Value of 8YSZ |
---|---|---|---|
Spraying current, A | 600 | 650 | 650 |
Spraying voltage, V | 50 | 55 | 53 |
Standoff distance, mm | 200 | 80 | 100 |
Power feed voltage of NiCoCrAlY, V | 4.0 | 3.5 | - |
Power feed voltage of 8YSZ, V | - | 6 | 6 |
Flow rate of NiCoCrAlY power feeding air, L/h | 150 | 700 | - |
Flow rate of 8YSZ power feeding air, L/h | - | 150 | 150 |
Scanning rate of plasma torch, mm/s | 200 | 8 | 120 |
H2 flow rate, L/min | 2 | 2 | 2 |
Ar flow rate, L/min | 60 | 60 | 60 |
H2 pressure, MPa | 0.4 | 0.4 | 0.4 |
Ar pressure, MPa | 0.6 | 0.6 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zheng, B.; Hua, C.; Pei, H.; Song, P. Influence of Gradient Index and Pores on the Properties and Internal Stress of Continuous Transition Ceramic–Metal Coating. Coatings 2022, 12, 569. https://doi.org/10.3390/coatings12050569
Zhu Y, Zheng B, Hua C, Pei H, Song P. Influence of Gradient Index and Pores on the Properties and Internal Stress of Continuous Transition Ceramic–Metal Coating. Coatings. 2022; 12(5):569. https://doi.org/10.3390/coatings12050569
Chicago/Turabian StyleZhu, Yousheng, Biju Zheng, Chen Hua, Hezhong Pei, and Peng Song. 2022. "Influence of Gradient Index and Pores on the Properties and Internal Stress of Continuous Transition Ceramic–Metal Coating" Coatings 12, no. 5: 569. https://doi.org/10.3390/coatings12050569
APA StyleZhu, Y., Zheng, B., Hua, C., Pei, H., & Song, P. (2022). Influence of Gradient Index and Pores on the Properties and Internal Stress of Continuous Transition Ceramic–Metal Coating. Coatings, 12(5), 569. https://doi.org/10.3390/coatings12050569