Biobased Approach for Synthesis of Polymers and Sustainable Formulation of Industrial Hardeners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Levulinic Acid Synthesis
2.3. Succinic Acid Synthesis
2.4. Synthesis of Succinyl Peroxide with Urea–H2O2 Complex (UHP)
2.5. Polymerization of Ethyl Methacrylate with Succinyl Peroxide
2.6. Formulation of Biobased Peroxide Paste
2.7. Preparation of Mastic for Marble
3. Results and Discussion
3.1. Improving Eco-Sustainability in the Synthesis of Biobased Succinyl Peroxide (SP)
3.2. Succinyl Peroxide as Polymerizing Agent of Ethyl Methacrylate
3.3. Formulation of a Biobased Benzoyl Peroxide Paste
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebnesajjad, S. Adhesives Technology Handbook, 2rd ed.; Publisher William Andrew Inc.: Norwich, NY, USA, 2008; pp. 1–387. [Google Scholar]
- Gierenz, G.; Karmann, W. Adhesives and Adhesive Tapes; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Sanghvi, M.R.; Tambare, O.H.; More, A.P. Performance of various fillers in adhesives applications: A review. Polym. Bull. 2022. [Google Scholar] [CrossRef]
- Brandt, A.L.; Beck, H.; Klein, J.; Damke, J.-E.; Schimdt, S.; Kuz, A.; De vries, J.G.; Hinze, S.; Van Heck, R. Bio-Based Reactive Plasticizer and Adhesives and Sealants Containing Them. Patent WO 2019166224 A1, 6 September 2019. [Google Scholar]
- Lestari, D.; Mulder, W.J.; Sanders, J.P.M. Jatropha seed protein functional properties for technical applications. Biochem. Eng. J. 2011, 53, 297–304. [Google Scholar] [CrossRef]
- Hamarneh, A.I.; Heeres, H.J.; Broekhuis, A.A.; Picchioni, F. Extraction of Jatropha curcas proteins and application in polyketone-based wood adhesives. Int. J. Adhes. Adhes. 2010, 30, 615–625. [Google Scholar] [CrossRef]
- Bunker, S.P.; Wool, R.P. Synthesis and Characterization of Monomers and Polymers for Adhesives from Methyl Oleate. J. Polym. Sci. A Polym. Chem. 2002, 40, 451–458. [Google Scholar] [CrossRef]
- Maassen, W.; Meier, M.A.R.; Willenbacher, N. Unique adhesive properties of pressure sensitive adhesives from plant oils. Int. J. Adhes. Adhes. 2016, 64, 65–71. [Google Scholar] [CrossRef]
- Lia, A.; Li, K. Pressure-Sensitive Adhesives Based on Tung Oil. RSC Adv. 2015, 5, 85264–85271. [Google Scholar] [CrossRef]
- Ahn, B.K.; Kraft, S.; Wang, D.; Sun, X.S. Thermally Stable, Transparent, Pressure-Sensitive Adhesives from Epoxidized and Dihydroxyl Soybean Oil. Biomacromolecules 2011, 12, 1839–1843. [Google Scholar] [CrossRef]
- Wool, R.P.; Bunker, S.P. Pressure Sensitive Adhesives from Plant Oils. U.S. Patent 20020188056A1, 12 December 2002. [Google Scholar]
- Guangyi, S.; Xia, J. Marble Glue Composition and Preparation Method Thereof. Patent CN111040705 (A), 21 April 2020. [Google Scholar]
- Annese, C.; D’Accolti, L.; Fusco, C.; Licini, G.; Zonta, C. Heterolytic (2 e) vs Homolytic (1 e) Oxidation Reactivity: N−H versus C−H Switch in the Oxidation of Lactams by Dioxirans. Chem. Eur. J. 2017, 23, 259–262. [Google Scholar] [CrossRef]
- Tarzia, A.; Montanaro, J.; Casiello, M.; Annese, C.; Nacci, A.; Maffezzoli, A. Synthesis, curing and properties of an epoxy resin derived from gallic acid. BioResource 2018, 13, 632–645. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, V.; Fiorini, F.; Lamanna, G.; Gubitosa, J.; Prasetyanto, E.A.; Fini, P.; Fanelli, F.; Nacci, A.; De Cola, L.; Cosma, P. Polyamidoamine-Based Hydrogel for Removal of Blue and Red Dyes from Wastewater. Adv. Sustain. Syst. 2018, 2, 1700146. [Google Scholar] [CrossRef]
- Crawford, J.W.C. Production of Polymerized Unsaturated Compounds. U.S. Patent 2097586, 25 February 1937. [Google Scholar]
- Pileidis, F.D.; Titirici, M.M. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. ChemSusChem 2016, 9, 562–582. [Google Scholar] [CrossRef] [PubMed]
- Laurenza, G.A.; Losito, O.; Casiello, M.; Fusco, C.; Nacci, A.; Pantone, V.; D’Accolti, L. Valorization of cigarette butts for top value-added chemicals: Levulinic Acid. Sci. Rep. 2021, 11, 15775. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Wu, L.; Mascal, M. Efficient, Metal-Free Production of Succinic Acid by Oxidation of biomass-derived Levulinic Acid with Hydrogen Peroxide. Green Chem. 2015, 17, 2335–2338. [Google Scholar] [CrossRef]
- Manoni, F.; Cornaggia, C.; Murray, J.; Tallon, S.; Connon, S.J. Catalytic, enantio- and diastereoselective synthesis of c-butyrolactones incorporating quaternary stereocentres. ChemComm 2012, 48, 6502–6504. [Google Scholar] [CrossRef]
- Pilevar, A.; Hosseini, A.; Becker, J.; Schreiner, P.R. Syn-Dihidroxylation of Alkenes Using a Sterically Demanding Cyclic Diacyl Peroxide. J. Org. Chem. 2019, 84, 12377–12386. [Google Scholar] [CrossRef]
- Peng, H.; Alemany, L.B.; Margrave, J.L.; Khabashesku, V.N. Sidewall Carboxylic Acid Functionalization of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2003, 125, 15174–15182. [Google Scholar] [CrossRef]
- Annese, C.; D’Accolti, L.; Filardi, R.; Tommasi, I.; Fusco, C. Oxidative cleavage of lactams in water using dioxiranes: An expedient and environmentally safe route to ω-nitro acids. TeLe 2013, 54, 515–517. [Google Scholar] [CrossRef]
- Brocklehurst, P.; Sheffield, C.N.; Ferguson, A.S. Stable Peroxide Composition and Method of preparation Thereof. U.S. Patent 4402853, 6 September 1983. [Google Scholar]
- Pantone, V.; Laurenza, A.G.; Annese, C.; Comparelli, R.; Fracassi, F.; Fini, P.; Nacci, A.; Russo, A.; Fusco, C.; D’Accolti, L. Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications. Materials 2017, 10, 848. [Google Scholar] [CrossRef]
- ASTM D2471-99 Standard Test Method for Gel Time and Peak Exothermic Temperature of Reacting Thermosetting Resins. Available online: https://www.mystandards.biz/standard/astm-d2471-99-10.11.1999.html (accessed on 25 January 2022).
- Harper, E.J.; Behiri, J.C.; Bonfield, W. Flexural and fatigue properties of a bone cement based upon polyethylmethacrylate and hydroxyapatite. J. Mater. Sci. Mater. Med. 1995, 6, 799–803. [Google Scholar] [CrossRef]
- Meena, M.; Nanjundan, S.; Umapathy, M.J. Free Radical Polymerization of Methyl and Ethyl Methacrylates by Green Methodology. Int. J. Appl. Eng. Res. 2016, 11, 2177–2184. [Google Scholar] [CrossRef]
- Karasz, F.E.; MacKnight, W.J. The Influence of Stereoregularity on the Glass Transition Temperatures of Vinyl Polymers. Macromolecules 1968, 1, 537–540. [Google Scholar] [CrossRef]
- Uusi-Penttilä, M.; Richards, R.J.; Blowers, P.; Torgerson, B.A.; Berglund, K.A. Liquid−Liquid Equilibria of Selected Dibasic Ester + Water + Solvent Ternary Systems. J. Chem. Eng. Data 1996, 41, 235–238. [Google Scholar] [CrossRef]
- Kamath, V.R.; Sargent, J.D. Polymer Bound Light Stabilizer Coating Resins. U.S. Patent US4927891, 22 May 1990. [Google Scholar]
- Certif TÜV Rheinland®- DIN CERTCO, Certification Scheme Biobased Products. Available online: https://www.dincertco.de/din-certco/en/main-navigation/products-and-services/certification-of-products/packaging/biobased-products/ (accessed on 25 January 2022).
RAW MATERIALS | Concentration Range (w/w%) |
---|---|
Peroxide | 59.14–59.3 |
Epoxidized soybean oil | 28.57–29.1 |
Vinyl versatate | 2.14–3.2 |
(Hydroxylpropyl)methylcellulose | 3.0–4.1 |
Distilled water | 5.5–7.5 |
Viscosity Pa∙s | 478.43 |
RAW MATERIALS | Concentration Range (w/w%) |
---|---|
Peroxide | 59.14–59.3 |
Methyl oleate | 28.57–29.1 |
Vinyl versatate | 2.14–3.2 |
(Hydroxylpropyl)methylcellulose | 3.0–4.1 |
Distilled water | 5.5–7.5 |
Viscosity Pa∙s | 378.84 |
RAW MATERIALS | Concentration Range (w/w%) | Optimized Formulations (w/w%) | |
---|---|---|---|
Benzoyl Peroxide | Succinyl Peroxide | ||
Peroxide | 59.14–59.3 | 59.14 | 59.14 |
DBE (dibasic ester C4, C5 and C6) | 28.57–29.1 | 28.57 | 28.57 |
Vinyl versatate | 2,14–3,2 | 2.14 | 2.14 |
(Hydroxylpropyl)methylcellulose | 3.0–4.1 | 3.0 | 3.0 |
Distilled water | 5.5–7.5 | 7.15 | 7.15 |
Total percentage | 100 | 100 | |
Viscosity Pa∙s | 109.39 | 922.86 | |
Biobased carbon content (%) | 28% | 96.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veronico, L.; Andriani, M.; Casiello, M.; Cotugno, P.; Fusco, C.; Gentile, L.; Monopoli, A.; D’Accolti, L. Biobased Approach for Synthesis of Polymers and Sustainable Formulation of Industrial Hardeners. Coatings 2022, 12, 361. https://doi.org/10.3390/coatings12030361
Veronico L, Andriani M, Casiello M, Cotugno P, Fusco C, Gentile L, Monopoli A, D’Accolti L. Biobased Approach for Synthesis of Polymers and Sustainable Formulation of Industrial Hardeners. Coatings. 2022; 12(3):361. https://doi.org/10.3390/coatings12030361
Chicago/Turabian StyleVeronico, Lorenzo, Michele Andriani, Michele Casiello, Pietro Cotugno, Caterina Fusco, Luigi Gentile, Antonio Monopoli, and Lucia D’Accolti. 2022. "Biobased Approach for Synthesis of Polymers and Sustainable Formulation of Industrial Hardeners" Coatings 12, no. 3: 361. https://doi.org/10.3390/coatings12030361
APA StyleVeronico, L., Andriani, M., Casiello, M., Cotugno, P., Fusco, C., Gentile, L., Monopoli, A., & D’Accolti, L. (2022). Biobased Approach for Synthesis of Polymers and Sustainable Formulation of Industrial Hardeners. Coatings, 12(3), 361. https://doi.org/10.3390/coatings12030361