Color Paintings of Taiping Heavenly Kingdom Royal Residence: An Analytical Study
Abstract
:1. Introduction
2. Materials and Experiment
2.1. Pigment Sample Information
2.2. Cross-Section Preparation
2.3. Analysis of Pigment
2.4. Analysis of the Mortar Layer Material
3. Results and Discussion
3.1. Cross-Section
3.2. Pigment
3.2.1. Red-1 Pigment
3.2.2. Black Pigment
3.2.3. White Pigment
3.2.4. Red-2 Pigment
3.3. Analysis of the Mortar Layer Material
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wang, L.Q.; Yang, L.; Zhou, W.H.; He, Q.J. Study on the analytical methods of component materials and making techniques of painting and colored drawing in ancient architectures. Relics Mus. 2009, 6, 451–454. [Google Scholar]
- Wang, L.Q.; Yang, L.; Zhou, W.H.; Yan, J.; Guo, R. Analysis of the techniques and materials of the coloured paintings in the renshou hall in the summer palace. Anal. Methods 2015, 7, 5334–5337. [Google Scholar] [CrossRef]
- Mazzeo, R.; Cam, D.; Chiavari, G.; Fabbri, D.; Ling, H.; Prati, S. Analytical study of traditional decorative materials and techniques used in ming dynasty wooden architecture: The case of the drum tower in xi’an, pr of china. J. Cult. Herit. 2004, 5, 273–283. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J.; Firth, S. Raman spectroscopy as a means for the identification of plattnerite (pbo2), of lead pigments and of their degradation products. Analyst 2001, 126, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.Y.; Wu, H.; Zhao, Y.; Tong, T.; Li, X.Y.; Yang, C.; Tang, Y.; Shen, X.Y.; Tong, H. Analysis on the composition/structure and lacquering techniques of the coffin of emperor qianlong excavated from the eastern imperial tombs. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, M.S.; Martinetto, P.; Somogyi, A.; Reyes-Valerio, C.; Dooryhee, E.; Peltier, N.; Alianelli, L.; Moignard, B.; Pichon, L.; Calligaro, T.; et al. Microanalysis study of archaeological mural samples containing maya blue pigment. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1619–1625. [Google Scholar] [CrossRef]
- Hradil, D.; Hradilova, J.; Bezdicka, P.; Serendan, C. Late gothic/early renaissance gilding technology and the traditional poliment material “armenian bole”: Truly red clay, or rather bauxite? Appl. Clay Sci. 2017, 135, 271–281. [Google Scholar] [CrossRef]
- Mazzocchin, G.A.; Agnoli, F.; Mazzocchin, S.; Colpo, I. Analysis of pigments from roman wall paintings found in vicenza. Talanta 2003, 61, 565–572. [Google Scholar] [CrossRef]
- Samanian, K. Identification of green pigment used in persian wall paintings (ad 1501–1736) using plm, ft-ir, sem/edx and gc-ms techniques. Archaeometry 2015, 57, 740–758. [Google Scholar] [CrossRef]
- Kugler, V.; Bean, S.; Spring, M. Quantitative edx analysis of smalt pigment in sixteenth and eighteenth century paintings. Microsc. Microanal. 2013, 19, 1428–1429. [Google Scholar] [CrossRef] [Green Version]
- Freitas, R.P.; Felix, V.S.; Pereira, M.O.; Santos, R.S.; Oliveira, A.L.; Goncalves, E.A.S.; Ferreira, D.S.; Pimenta, A.R.; Pereira, L.O.; Anjos, M.J. Micro-xrf analysis of a brazilian polychrome sculpture. Microchem. J. 2019, 149, 6. [Google Scholar] [CrossRef]
- Bell, I.M.; Clark, R.J.; Gibbs, P.J. Raman spectroscopic library of natural and synthetic pigments (pre-approximately 1850 ad). Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 1997, 53A, 2159–2179. [Google Scholar] [CrossRef]
- Franquelo, M.L.; Duran, A.; Herrera, L.K.; de Haro, M.C.J.; Perez-Rodriguez, J.L. Comparison between micro-raman and micro-ftir spectroscopy techniques for the characterization of pigments from southern spain cultural heritage. J. Mol. Struct. 2009, 924, 404–412. [Google Scholar] [CrossRef]
- Lang, P.L.; Keefer, C.D.; Juenemann, J.C.; Tran, K.V.; Peters, S.M.; Huth, N.M.; Joyaux, A.G. The infrared microspectroscopic and energy dispersive x-ray analysis of paints removed from a painted, medieval sculpture of saint wolfgang. Microchem. J. 2003, 74, 33–46. [Google Scholar] [CrossRef]
- Perez-Alonso, M.; Castro, K.; Madariaga, J.M. Investigation of degradation mechanisms by portable raman spectroscopy and thermodynamic speciation: The wall painting of santa maria de lemoniz (basque country, north of spain). Anal. Chim. Acta 2006, 571, 121–128. [Google Scholar] [CrossRef]
- Svarcova, S.; Cermakova, Z.; Hradilova, J.; Bezdicka, P.; Hradil, D. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 132, 514–525. [Google Scholar] [CrossRef]
- Stanzani, E.; Bersani, D.; Lottici, P.P.; Colomban, P. Analysis of artist’s palette on a 16th century wood panel painting by portable and laboratory raman instruments. Vib. Spectrosc. 2016, 85, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Bai, B.B.; Yang, Q. Studies on the traditional techniques anf the conservation method of polychrome paintings on wooden structures of chinese traditioal buildings. Relics Mus. 2009, 6, 412–421. [Google Scholar]
- Rao, H.Y.; Li, B.; Yang, Y.M.; Ma, Q.L.; Wang, C.S. Proteomic identification of organic additives in the mortars of ancient chinese wooden buildings. Anal. Methods 2015, 7, 143–149. [Google Scholar] [CrossRef]
- Kurouski, D.; Zaleski, S.; Casadio, F.; Van Duyne, R.P.; Shah, N.C. Tip-enhanced raman spectroscopy (ters) for in situ identification of indigo and iron gall ink on paper. J. Am. Chem. Soc. 2014, 136, 8677–8684. [Google Scholar] [CrossRef]
- Nigra, B.T.; Faull, K.F.; Barnard, H. Analytical chemistry in archaeological research. Anal. Chem. 2015, 87, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Oakley, L.H.; Dinehart, S.A.; Svoboda, S.A.; Wustholz, K.L. Identification of organic materials in historic oil paintings using correlated extractionless surface-enhanced raman scattering and fluorescence microscopy. Anal. Chem. 2011, 83, 3986–3989. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.S.; White, R. The Organic Chemistry of Museum Objects, 2nd ed.; Butterworth Heinemann Ltd.: Oxford, UK, 1994; (Reprinted 2003). [Google Scholar]
- Van den Berg, J.D.J.; van den Berg, K.J.; Boon, J.J. Determination of the degree of hydrolysis of oil paint samples using a two-step derivatisation method and on-column gc/ms. Prog. Org. Coat. 2001, 41, 143–155. [Google Scholar] [CrossRef]
- Echard, J.P.; Benoit, C.; Peris-Vicente, J.; Malecki, V.; Gimeno-Adelantado, J.V.; Vaiedelich, S. Gas chromatography/mass spectrometry characterization of historical varnishes of ancient italian lutes and violin. Anal. Chim. Acta 2007, 584, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Gimeno-Adelantado, J.V.; Mateo-Castro, R.; Domenech-Carbo, M.T.; Bosch-Reig, F.; Domenech-Carbo, A.; Casas-Catalan, M.J.; Osete-Cortina, L. Identification of lipid binders in paintings by gas chromatography-influence of the pigments. J. Chromatogr. A 2001, 922, 385–390. [Google Scholar] [CrossRef]
- Kouloumpi, E.; Vandenabeele, P.; Lawson, G.; Pavlidis, V.; Moens, L. Analysis of post-byzantine icons from the church of the assumption in cephalonia, ionian islands, greece: A multi-method approach. Anal. Chim. Acta 2007, 598, 169–179. [Google Scholar] [CrossRef]
- Surowiec, I.; Kaml, I.; Kenndler, E. Analysis of drying oils used as binding media for objects of art by capillary electrophoresis with indirect uv and conductivity detection. J. Chromatogr. A 2004, 1024, 245–254. [Google Scholar] [CrossRef]
- Cipriani, G.; Salvini, A.; Dei, L.; Macherelli, A.; Cecchi, F.S.; Giannelli, C. Recent advances in swollen-state nmr spectroscopy for the study of drying oils. J. Cult. Herit. 2009, 10, 388–395. [Google Scholar] [CrossRef]
- Stenberg, C.; Svensson, M.; Johansson, M. Study of the drying of linseed oils with different fatty acid patterns using rtir-spectroscopy and chemiluminescence (cl). Ind. Crops Prod. 2005, 21, 263–272. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Artz, W.E.; Padua, G.W. Fourier transform infrared spectra of drying oils treated by irradiation. J. Agric. Food Chem. 2008, 56, 3043–3048. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Ortega-Aviles, M.; Castilleros, D.T.; Moens, L. Raman spectroscopic analysis of mexican natural artists’ materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 68, 1085–1088. [Google Scholar] [CrossRef] [PubMed]
- Vandenabeele, P.; Wehling, B.; Moens, L.; Edwards, H.; De Reu, M.; Van Hooydonk, G. Analysis with micro-raman spectroscopy of natural organic binding media and varnishes used in art. Anal. Chim. Acta 2000, 407, 261–274. [Google Scholar] [CrossRef]
- Matteini, P.; Camaiti, M.; Agati, G.; Baldo, M.A.; Muto, S.; Matteini, M. Discrimination of painting binders subjected to photo-ageing by using microspectrofluorometry coupled with deconvolution analysis. J. Cult. Herit. 2009, 10, 198–205. [Google Scholar] [CrossRef]
- Chiantore, O.; Riedo, C.; Scalarone, D. Gas chromatography-mass spectrometric analysis of products from on-line pyrolysis/silylation of plant gums used as binding media. Int. J. Mass Spectrom. 2009, 284, 35–41. [Google Scholar] [CrossRef]
- Song, Y.; Gao, F.; Nevin, A.; Guo, J.W.; Zhou, X.; Wei, S.Y.; Li, Q.Q. A technical study of the materials and manufacturing process used in the gallery wall paintings from the jokhang temple, tibet. Herit. Sci. 2018, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- De la Cruz-Canizares, J.; Domenech-Carbo, M.T.; Gimeno-Adelantado, J.V.; Mateo-Castro, R.; Bosch-Reig, F. Study of burseraceae resins used in binding media and varnishes from artworks by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. J. Chromatogr. A 2005, 1093, 177–194. [Google Scholar] [CrossRef]
- Niimura, N. Determination of the type of lacquer on east asian lacquer ware. Int. J. Mass Spectrom. 2009, 284, 93–97. [Google Scholar] [CrossRef]
- Mazzocchin, G.A.; Agnoli, F.; Salvadori, M. Analysis of roman age wall paintings found in pordenone, trieste and montegrotto. Talanta 2004, 64, 732–741. [Google Scholar] [CrossRef]
- Nusimovici, M.A.; Meskaoui, A. Raman Scattering by α-HgS (Cinnabar). Phys. Status Solidi B 1973, 58, 121–125. [Google Scholar] [CrossRef]
- Dimitrios, L.; Ioannis, K.; Olga, K. Spectroscopic investigation leading to the documentation of three post-byzantine wall paintings. Appl. Spectrosc. Soc. Appl. Spectrosc. 2017, 71, 129–140. [Google Scholar]
- Fostiridou, A.; Karapanagiotis, I.; Vivdenko, S.; Lampakis, D.; Mantzouris, D.; Achilara, L.; Manoudis, P. Identification of pigments in hellenistic and roman funeral figurines. Archaeometry 2016, 58, 453–464. [Google Scholar] [CrossRef]
- Karapanagiotis, I.; Lampakis, D.; Konstanta, A.; Farmakalidis, H. Identification of colourants in icons of the cretan school of iconography using raman spectroscopy and liquid chromatography. J. Archaeol. Ence 2013, 40, 1471–1478. [Google Scholar] [CrossRef]
- Bouchard, M.; Smith, D.C. Catalogue of 45 reference raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 9, 2247–2266. [Google Scholar] [CrossRef]
- Ha, T.; Lee, H.; Sim, K.I.; Kim, J.; Jo, Y.C.; Kim, J.H.; Baek, N.Y.; Kang, D.I.; Lee, H.H. Optimal methodologies for terahertz time-domain spectroscopic analysis of traditional pigments in powder form. J. Korean Phys. Soc. 2017, 70, 866–871. [Google Scholar] [CrossRef]
- Li, N.S.; Yang, Y.M.; He, N.; Mao, Z.W. Spectral analysis of ceramic-painting pigments from taosi site. Spectrosc. Spectr. Anal. 2008, 28, 946–948. [Google Scholar]
- Shi, J.L.; Li, T. Technical investigation of 15th and 19th century chinese paper currencies: Fiber use and pigment identification. J. Raman Spectrosc. 2013, 44, 892–898. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Y.; Liu, C.; Jing, B. A technological analysis of fish pattern painted pottery from the neolithic site of banpo. Bull. Chin. Ceram. Soc. 2014, 33, 1389–1393. [Google Scholar]
- Zhu, T.Q.; Chen, J.; Hui, R.; Gong, L.; Zhang, W.H.; Zhang, Y.C. Spectroscopic characterization of the architectural painting from the cizhong catholic church of yunnan province, china. Anal. Lett. 2013, 46, 2253–2264. [Google Scholar] [CrossRef]
- Nakamizo, M.; Kammereck, R.; Walker, P.L. Laser raman studies on carbons. Carbon 1973, 12, 259–267. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Martens, W.N.; Rintoul, L.; Kloprogge, J.T.; Frost, R.L. Single crystal raman spectroscopy of cerussite. Am. Mineral. 2004, 89, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Klisinska-Kopacz, A. Non-destructive characterization of 17th century painted silk banner by the combined use of raman and xrf portable systems. J. Raman Spectrosc. 2015, 46, 317–321. [Google Scholar] [CrossRef]
- Arjonilla, P.; Dominguez-Vidal, A.; Correa-Gomez, E.; Domene-Ruiz, M.J.; Ayora-Canada, M.J. Raman and fourier transform infrared microspectroscopies reveal medieval hispano-muslim wood painting techniques and provide new insights into red lead production technology. J. Raman Spectrosc. 2019, 50, 1537–1545. [Google Scholar] [CrossRef]
- Petrova, O.; Pankin, D.; Povolotckaia, A.; Borisov, E.; Krivul’ko, T.; Kurganov, N.; Kurochkin, A. Pigment palette study of the xix century plafond painting by raman spectroscopy. J. Cult. Herit. 2019, 37, 233–237. [Google Scholar] [CrossRef]
- Vigouroux, J.P.; Husson, E.; Calvarin, G.; Dao, N.Q. Etude par spectroscopié vibrationnelle des oxydes Pb3O4, SnPb2O4 et SnPb(Pb2O4)2. Spectrochim. Acta Part A Mol. Spectrosc. 1982, 38, 393–398. [Google Scholar] [CrossRef]
- Guo, X.L.; Shi, H.S.; Dick, W.A. Compressive strength and microstructural characteristics of class c fly ash geopolymer. Cem. Concr. Compos. 2010, 32, 142–147. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Yu, J.; Chen, P.; Xu, R. Transformations of a layer and a chain aluminophosphates to the zeotype ∣al–p–m–o∣–gis (m = co2+, mn2+, mg2+). Microporous Mesoporous Mater. 2007, 98, 47–54. [Google Scholar] [CrossRef]
- Pesenti, H.; Leoni, M.; Scardi, P. Xrd line profile analysis of calcite powders produced by high energy milling. Z. Fur Krist. 2008, 27, 143–150. [Google Scholar]
- Zheng, Q.F.; Wang, Z.M.; Chen, B.G.; Liu, G.F.; Zhao, J. Analysis of xrd spectral structure and carbonization of the biochar preparation. Spectrosc. Spectr. Anal. 2016, 36, 3355–3359. [Google Scholar]
- Qingfu, Z.; Zhimin, W.; Baoguo, C.; Guifeng, L.; Ji, Z. Analysis of xrd spectral structure and carbonization of the biochar preparation. Spectrosc. Spectr. Anal. 2016, 36, 5. [Google Scholar]
- Tamburini, D.; Sardi, D.; Spepi, A.; Duce, C.; Tine, M.R.; Colombini, M.P.; Bonaduce, I. An investigation into the curing of urushi and tung oil films by thermoanalytical and mass spectrometric techniques. Polym. Degrad. Stab. 2016, 134, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Qin, P.F.; Yi, D.Q.; Meng, Q.; Sun, A.J.; Sun, J.Q.; Zhang, Z.J.; Hao, J.W. Study and restoration of the yi ma wu hui layer of the ancient coating on the putuo zongcheng temple. Int. J. Archit. Herit. 2021, 15, 1707–1721. [Google Scholar]
- Wang, N.; He, L.; Zhao, X.; Simon, S. Comparative analysis of eastern and western drying-oil binding media used in polychromic artworks by pyrolysis-gas chromatography/mass spectrometry under the influence of pigments. Microchem. J. 2015, 123, 201–210. [Google Scholar] [CrossRef]
Sampling Location | Sample Positon | Micrographies of Samples. | Color |
---|---|---|---|
Red-1 | |||
White | |||
Red-2 | |||
Black |
Sample | Cross-Section Micrograph | Composition | Thickness | Total Number of Layers |
---|---|---|---|---|
Red-1 | a-red pigment b-base color c-ground layer | 55 μm 46 μm 302 μm | 3 | |
Red-2 | a-red-2 pigment b-base color c-ground layer | 35 μm 74 μm 173 μm | 3 | |
Black | a-black pigment b-ground layer | 67 μm >1000 μm | 2 | |
White | a-white pigment b-base color c-base color d-ground layer | 25 μm 7 μm 57 μm 119 μm | 4 |
Sample | Analysis Methods | Main Elements (wt%) | Composition of Pigments |
---|---|---|---|
Red-1 Pigment | ED-XRF, m-RS and PLM | Hg(40.27), S(30.64), Ca(12.79), Fe(5.29), Si(5.21) | HgS |
Black Pigment | ED-XRF, m-RS and PLM | Ca(39.30), Fe(22.52), S(19.89), K(7.04), Si(6.476) | Iron black (Fe3O4) or C(graphite) |
White Pigment | ED-XRF, m-RS and PLM | Pb(78.77), Ca(9.72), Si(5.99), K(2.95), Fe(2.14) | 2PbCO3·Pb(OH)2 |
Red-2 Pigment | ED-XRF, m-RS and PLM | Pb(76.64), Hg(9.22), Si(7.89), Ca(4.47), Fe(0.90) | Pb3O4 and HgS |
Peak Number | Retention Time (min) | Pear Area (%) | Compound |
---|---|---|---|
1 | 7.339 | 1.7 | Glycerol |
2 | 10.55 | 0.91 | Methyl 6-heptenoic acid |
3 | 12.512 | 0.64 | Octanoic acid |
4 | 15.217 | 0.87 | Heptane dioic acid |
5 | 15.633 | 0.37 | 1-Tetradecene |
6 | 16.096 | 1.58 | 9-Oxo-nonanoic acid |
7 | 16.176 | 3.21 | Octane dioic acid |
8 | 17.049 | 18.37 | Dimethyl azelate (azelaic acid) |
9 | 19.875 | 19.95 | Palmitic acid |
10 | 21.039 | 7.75 | Palmitic acid |
11 | 21.183 | 17.11 | Stearic acid |
12 | 21.379 | 1.43 | Bicyclo [3.1.1] hept-2-ene-2-ethanol,6,6-dimethyl-acetate |
13 | 22.381 | 1.48 | Methyl arachidate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teri, G.; Fu, P.; Han, K.; Li, J.; Li, Y.; Jia, Z.; Wang, Y.; Li, Y. Color Paintings of Taiping Heavenly Kingdom Royal Residence: An Analytical Study. Coatings 2022, 12, 1880. https://doi.org/10.3390/coatings12121880
Teri G, Fu P, Han K, Li J, Li Y, Jia Z, Wang Y, Li Y. Color Paintings of Taiping Heavenly Kingdom Royal Residence: An Analytical Study. Coatings. 2022; 12(12):1880. https://doi.org/10.3390/coatings12121880
Chicago/Turabian StyleTeri, Gele, Peng Fu, Kezhu Han, Jiaxin Li, Yanli Li, Zhihui Jia, Yongjin Wang, and Yuhu Li. 2022. "Color Paintings of Taiping Heavenly Kingdom Royal Residence: An Analytical Study" Coatings 12, no. 12: 1880. https://doi.org/10.3390/coatings12121880
APA StyleTeri, G., Fu, P., Han, K., Li, J., Li, Y., Jia, Z., Wang, Y., & Li, Y. (2022). Color Paintings of Taiping Heavenly Kingdom Royal Residence: An Analytical Study. Coatings, 12(12), 1880. https://doi.org/10.3390/coatings12121880