Edible Coating Based on Carnauba Wax Nanoemulsion and Cymbopogon martinii Essential Oil on Papaya Postharvest Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoemulsions Production
2.3. Non-Destructive Analyses
2.4. Destructive Analyses
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.; Li, X.; Chen, W.; Lu, W.; Mao, J.; Liu, T. Molecular cloning, characterization and expression analysis of CpCBF2 gene in harvested papaya fruit under temperature stresses. Electron. J. Biotechnol. 2013, 16, 1–10. [Google Scholar]
- Ong, M.K.; Kazi, F.K.; Forney, C.F.; Ali, A. Effect of gaseous ozone on papaya anthracnose. Food Bioprocess Technol. 2013, 6, 2996–3005. [Google Scholar]
- Batista, D.D.V.S.; Reis, R.C.; Almeida, J.M.; Rezende, B.; Bragança, C.A.D.; da Silva, F. Edible coatings in post-harvest papaya: Impact on physical–chemical and sensory characteristics. J. Food Sci. Technol. 2020, 57, 274–281. [Google Scholar]
- Rico, D.; Martin-Diana, A.B.; Barat, J.M.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar]
- Arnon-Rips, H.; Poverenov, E. Improving food products’ quality and storability by using Layer by Layer edible coatings. Trends Food Sci. Technol. 2018, 75, 81–92. [Google Scholar]
- Williams, H.; Wikström, F. Environmental impact of packaging and food losses in a life cycle perspective: A comparative analysis of five food items. J. Clean. Prod. 2011, 19, 43–48. [Google Scholar]
- Flores-López, M.L.; Cerqueira, M.A.; de Rodríguez, D.J.; Vicente, A.A. Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables. Food Eng. Rev. 2016, 8, 292–305. [Google Scholar]
- Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of edible films and coatings from alginates and carrageenans. Carbohydr. Polym. 2016, 137, 360–374. [Google Scholar]
- Salehi, F. Edible coating of fruits and vegetables using natural gums: A review. Int. J. Fruit Sci. 2020, 20 (Suppl. 2), S570–S589. [Google Scholar]
- Yousuf, B.; Qadri, O.S. Preservation of fresh-cut fruits and vegetables by edible coatings. In Fresh-Cut Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2020; pp. 225–242. [Google Scholar]
- McHugh, T.H.; Senesi, E. Apple wraps: A novel method to improve the quality and extend the shelf life of fresh-cut apples. J. Food Sci. 2000, 65, 480–485. [Google Scholar]
- De Oliveira Filho, J.G.; Miranda, M.; Ferreira, M.D.; Plotto, A. Nanoemulsions as edible coatings: A potential strategy for fresh fruits and vegetables preservation. Foods 2021, 10, 2438. [Google Scholar]
- Momin, M.C.; Jamir, A.R.; Ankalagi, N.; Henny, T.; Devi, O.B. Edible coatings in fruits and vegetables: A brief review. Pharma Innov. J. 2021, 10, 71–78. [Google Scholar]
- Garcia, F.; Davidov-Pardo, G. Recent advances in the use of edible coatings for preservation of avocados: A review. J. Food Sci. 2021, 86, 6–15. [Google Scholar]
- Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT 2018, 89, 198–209. [Google Scholar]
- Zucchini, N.M.; Florencio, C.; Miranda, M.; Borba, K.R.; Oldoni, F.C.A.; Oliveira Filho, J.G.; Bonfim, N.S.; Rodrigues, K.A.; de Oliveira, R.M.D.; Mitsuyuki, M.C.; et al. Effect of carnauba wax nanoemulsion coating on postharvest papaya quality. Acta Hortic 2021, 1325, 199–206. [Google Scholar] [CrossRef]
- Miranda, M.; Marilene De Mori, M.R.; Spricigo, P.C.; Pilon, L.; Mitsuyuki, M.C.; Correa, D.S.; Ferreira, M.D. Carnauba wax nanoemulsion applied as an edible coating on fresh tomato for postharvest quality evaluation. Heliyon 2022, 8, e09803. [Google Scholar] [CrossRef]
- Miranda, M.; Sun, X.; Marín, A.; Dos Santos, L.C.; Plotto, A.; Bai, J.; Baldwin, E. Nano-and micro-sized carnauba wax emulsions-based coatings incorporated with ginger essential oil and hydroxypropyl methylcellulose on papaya: Preservation of quality and delay of post-harvest fruit decay. Food Chem. X 2022, 13, 100249. [Google Scholar] [CrossRef]
- Rodrigues, L.C.; Silva, A.A.D.; Silva, R.B.D.; Oliveira, A.F.M.D.; Andrade, L.D.H.C. Conhecimento e uso da carnaúba e da algaroba em comunidades do Sertão do Rio Grande do Norte, Nordeste do Brasil. Rev. Árvore 2013, 37, 451–457. [Google Scholar]
- De Oliveira Filho, J.G.; Bezerra, C.C.D.O.N.; Albiero, B.R.; Oldoni, F.C.A.; Miranda, M.; Egea, M.B.; Ferreira, M.D. New approach in the development of edible films: The use of carnauba wax micro-or nanoemulsions in arrowroot starch-based films. Food Packag. Shelf Life 2020, 26, 100589. [Google Scholar]
- Jummes, B.; Sganzerla, W.G.; da Rosa, C.G.; Noronha, C.M.; Nunes, M.R.; Bertoldi, F.C.; Barreto, P.L.M. Antioxidant and antimicrobial poly-ε-caprolactone nanoparticles loaded with Cymbopogon martinii essential oil. Biocatal. Agric. Biotechnol. 2020, 23, 101499. [Google Scholar]
- Marinković, J.; Ćulafić, D.M.; Nikolić, B.; Đukanović, S.; Marković, T.; Tasić, G.; Marković, D. Antimicrobial potential of irrigants based on essential oils of Cymbopogon martinii and Thymus zygis towards in vitro multispecies biofilm cultured in ex vivo root canals. Arch. Oral Biol. 2020, 117, 104842. [Google Scholar]
- Kalagatur, N.K.; Nirmal Ghosh, O.S.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar]
- Oliveira Filho, J.G.D.; da Cruz Silva, G.; de Aguiar, A.C.; Cipriano, L.; de Azeredo, H.M.C.; Bogusz Junior, S.; Ferreira, M.D. Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries. J. Food Meas. Charact. 2021, 15, 1815–1825. [Google Scholar]
- Oliveira Filho, J.G.; Silva, G.; Egea, M.B.; de Azeredo, H.M.C.; Ferreira, M.D. Essential oils as natural fungi-cides to control rhizopus stolonifer-induced spoiled of strawberries. Biointerface Res. Appl. Chem. 2021, 11, 13244–13251. [Google Scholar]
- Santamaría Basulto, F.; Sauri Duch, E.; Espadas y Gil, F.; Díaz Plaza, R.; Larqué Saavedra, A.; Santamaría, J.M. Amadurecimento Pos Colheita E Índices De Maturação De Papaya Maradol. Interciencia 2009, 34, 583–588. [Google Scholar]
- Hagenmaier, R.D.; Baker, R.A. Edible Coatings from Morpholine-Free Wax Microemulsions. J. Agric. Food Chem. 1997, 45, 349–352. [Google Scholar] [CrossRef]
- Miranda, M.; Sun, X.; Ference, C.; Plotto, A.; Bai, J.; Wood, D.; Assis, O.B.G.; Ferreira, M.D.; Baldwin, E. Nano-and micro-carnauba wax emulsions versus shellac protective coatings on postharvest citrus quality. J. Am. Soc. Hortic. 2021, 146, 40–49. [Google Scholar]
- AOAC. Official Method of Analysis, 18th ed.; Method 935.14 and 992.24; Association of Officiating Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Cia, P.; Benato, E.A.; Pascholati, S.F.; Garcia, E.O. Quitosana no controle pós-colheita da podridão mole em caqui’rama forte’. Bragantia 2010, 69, 745–752. [Google Scholar]
- Guerreiro, A.C.; Gago, C.M.; Faleiro, M.L.; Miguel, M.G.; Antunes, M.D. Raspberry fresh fruit quality as affected by pectin-and alginate-based edible coatings enriched with essential oils. Sci. Hortic. 2015, 194, 138–146. [Google Scholar]
- Monzón-Ortega, K.; Salvador-Figueroa, M.; Gálvez-López, D.; Rosas-Quijano, R.; Ovando-Medina, I.; Vázquez-Ovando, A. Characterization of Aloe vera-chitosan composite films and their use for reducing the disease caused by fungi in papaya Maradol. J. Food Sci. Technol. 2018, 55, 4747–4757. [Google Scholar]
- Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem. 2011, 124, 620–626. [Google Scholar]
- Braga, S.P.; Lundgren, G.A.; Macedo, S.A.; Tavares, J.F.; dos Santos Vieira, W.A.; Câmara, M.P.S.; de Souza, E.L. Application of coatings formed by chitosan and Mentha essential oils to control anthracnose caused by Colletotrichum gloesporioides and C. brevisporum in papaya (Carica papaya L.) fruit. Int. J. Biol. Macromol. 2019, 139, 631–639. [Google Scholar]
- Kelebek, H.; Selli, S.; Gubbuk, H.; Gunes, E. Comparative evaluation of volatiles, phenolics, sugars, organic acids and antioxidant properties of Sel-42 and Tainung papaya varieties. Food Chem. 2015, 173, 912–919. [Google Scholar]
- Mendy, T.K.; Misran, A.; Mahmud, T.M.M.; Ismail, S.I. Application of Aloe vera coating delays ripening and extend the shelf life of papaya fruit. Sci. Hortic. 2019, 246, 769–776. [Google Scholar]
- Cortez-Vega, W.R.; Pizato, S.; de Souza, J.T.A.; Prentice, C. Using edible coatings from Whitemouth croaker (Micropogonias furnieri) protein isolate and organo-clay nanocomposite for improve the conservation properties of fresh-cut ‘Formosa’papaya. Innov. Food Sci. Emerg. Technol. 2014, 22, 197–202. [Google Scholar]
- Yeimmy, P.R.; Tovar, C.G.; Angie, S.M.; Daniel, B.; Cordero, A.P.; Paparella, A.; Chaves Lopez, C. Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. Int. J. Food Microbiol. 2020, 326, 108649. [Google Scholar]
- Parven, A.; Sarker, M.R.; Megharaj, M.; Meftaul, I.M. Prolonging the shelf life of Papaya (Carica papaya L.) using Aloe vera gel at ambient temperature. Sci. Hortic. 2020, 265, 109228. [Google Scholar]
- Zillo, R.R.; da Silva, P.P.M.; de Oliveira, J.; da Glória, E.M.; Spoto, M.H.F. Carboxymethylcellulose coating associated with essential oil can increase papaya shelf life. Sci. Hortic. 2018, 239, 70–77. [Google Scholar]
- Barragán-Iglesias, J.; Méndez-Lagunas, L.L.; Rodríguez-Ramírez, J. Ripeness indexes and physicochemical changes of papaya (Carica papaya L. cv. Maradol) during ripening on-tree. Sci. Hortic. 2018, 236, 272–278. [Google Scholar]
- Jing, G.; Li, T.; Qu, H.; Yun, Z.; Jia, Y.; Zheng, X.; Jiang, Y. Carotenoids and volatile profiles of yellow-and red-fleshed papaya fruit in relation to the expression of carotenoid cleavage dioxygenase genes. Postharvest Biol. Technol. 2015, 109, 114–119. [Google Scholar]
- Kumar, A.; Saini, C.S. Edible composite bi-layer coating based on whey protein isolate, xanthan gum and clove oil for prolonging shelf life of tomatoes. Meas. Food 2021, 2, 100005. [Google Scholar]
- Gonçalves, F.P.; Martins, M.C.; Junior, G.J.S.; Lourenço, S.A.; Amorim, L. Postharvest control of brown rot and Rhizopus rot in plums and nectarines using carnauba wax. Postharvest Biol. Technol. 2010, 58, 211–217. [Google Scholar]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martín-Belloso, O. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int. J. Food Microbiol. 2008, 121, 313–327. [Google Scholar]
Table | Parameters | |||
---|---|---|---|---|
Firmness (N) | pH | AT * | SS ** | |
Control | 4.8 ± 0.3 a | 5.3 ± 0.2 a | 0.11 ± 0.01 b | 12.4 ± 0.6 a |
CWN | 5.8 ± 0.7 b | 5.6 ± 0.1 b | 0.13 ± 0.01 a | 11.1 ± 0.6 b |
CWN + CEO 0.75 | 6.3 ± 0.5 b | 5.5 ± 0.1 b | 0.14 ± 0.01 a | 10.9 ± 0.6 b |
CWN + CEO 1.5 | 5.6 ± 0.7 b | 5.7 ± 0.2 b | 0.14 ± 0.02 a | 10.9 ± 0.4 b |
Treatments | Time (Days) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | |||||||||
L * | C * | (h°) | L * | C * | (h°) | L * | C * | (h°) | L * | C * | (h°) | |
Control | 59.2 ± 0.0 a | 5.1 ± 2.8 a | 80.0 ± 1.6 a | 67.1 ± 1.5 a | 11.2 ± 2.5 a | 62.2 ± 2.52 a | 62.4 ± 2.2 b | 15.0 ± 1.5 a | 54.4 ± 3.0 b | 49.4 ± 2.1 b | 14.6 ± 1.9 a | 48.8 ± 2.3 b |
CWN | 61.0 ± 3.6 a | 5.7 ± 4.0 a | 81.0 ± 2.4 a | 66.5 ± 3.8 a | 9.0 ± 3.9 a | 65.2 ± 3.92 a | 68.2 ± 2.1 a | 14.1 ± 3.3 a | 66.21 ± 4.8 a | 56.5 ± 3.8 a | 14.6 ± 1.8 a | 59.8 ± 2.3 a |
CWN + CEO 0.75 | 60.0 ± 3.8 a | 3.8 ± 2.5 a | 80.4 ± 2.2 a | 67.2 ± 2.9 a | 9.4 ± 3.2 a | 65.6 ± 3.22 a | 68.7 ± 2.2 a | 14.0 ± 2.0 a | 66.21 ± 3.2 a | 58.5 ± 3.0 a | 15.0 ± 2.0 a | 58.7 ± 2.3 a |
CWN + CEO 1.5 | 55.9 ± 3.9 a | 2.8 ± 3.0 a | 88.3 ± 2.0 a | 67.3 ± 2.4 a | 7.8 ± 3.5 a | 62.9 ± 3.51 a | 66.8 ± 2.0 a | 14.4 ± 2.0 a | 64.78 ± 3.3 a | 55.9 ± 3.6 a | 14.5 ± 1.4 a | 57.2 ± 3.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira Filho, J.G.d.; Silva, G.d.C.; Oldoni, F.C.A.; Miranda, M.; Florencio, C.; Oliveira, R.M.D.d.; Gomes, M.d.P.; Ferreira, M.D. Edible Coating Based on Carnauba Wax Nanoemulsion and Cymbopogon martinii Essential Oil on Papaya Postharvest Preservation. Coatings 2022, 12, 1700. https://doi.org/10.3390/coatings12111700
Oliveira Filho JGd, Silva GdC, Oldoni FCA, Miranda M, Florencio C, Oliveira RMDd, Gomes MdP, Ferreira MD. Edible Coating Based on Carnauba Wax Nanoemulsion and Cymbopogon martinii Essential Oil on Papaya Postharvest Preservation. Coatings. 2022; 12(11):1700. https://doi.org/10.3390/coatings12111700
Chicago/Turabian StyleOliveira Filho, Josemar Gonçalves de, Guilherme da Cruz Silva, Fernanda Campos Alencar Oldoni, Marcela Miranda, Camila Florencio, Raissa Moret Duarte de Oliveira, Mariana de Paula Gomes, and Marcos David Ferreira. 2022. "Edible Coating Based on Carnauba Wax Nanoemulsion and Cymbopogon martinii Essential Oil on Papaya Postharvest Preservation" Coatings 12, no. 11: 1700. https://doi.org/10.3390/coatings12111700
APA StyleOliveira Filho, J. G. d., Silva, G. d. C., Oldoni, F. C. A., Miranda, M., Florencio, C., Oliveira, R. M. D. d., Gomes, M. d. P., & Ferreira, M. D. (2022). Edible Coating Based on Carnauba Wax Nanoemulsion and Cymbopogon martinii Essential Oil on Papaya Postharvest Preservation. Coatings, 12(11), 1700. https://doi.org/10.3390/coatings12111700