Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saji, V.S. Superhydrophobic surfaces and coatings by electrochemical anodic oxidation and plasma electrolytic oxidation. Adv. Colloid Interface Sci. 2020, 283, 102245. [Google Scholar] [CrossRef] [PubMed]
- Azadian, F.; Rastogi, A.C. Energy storage performance of thin film nanocrystalline vanadium oxide with fluorinated tin oxide current carrier electrode for solid-state transparent supercapacitors based on ionic liquid gel electrolyte. Electrochim. Acta 2019, 330, 135339. [Google Scholar] [CrossRef]
- Khoroshko, L.S.; Kortov, V.S.; Gaponenko, N.V.; Raichyonok, T.F.; Tikhomirov, S.A.; Pustovarov, V.A. X-ray-, cathodo-, and photoluminescence of yttrium–aluminum composites on porous anodic alumina films. J. Appl. Spectrosc. 2016, 83, 358–361. [Google Scholar] [CrossRef]
- Khoroshko, L.S. Two-dimensional porous anodic alumina for optoelectronics and photocatalytic application. J. Phys. Conf. Ser. 2015, 643, 012110. [Google Scholar] [CrossRef] [Green Version]
- Yoldas, B.E. Investigations of porous oxides as an antireflective coating for glass surfaces. Appl. Opt. 1980, 19, 1425–1429. [Google Scholar] [CrossRef]
- Petrovykh, K.A.; Kortov, V.S.; Gaponenko, N.V.; Rempel’, A.A.; Rudenko, M.V.; Khoroshko, L.S.; Voznesenskii, S.S.; Sergeev, A.A.; Pustovarov, V.A. Photoluminescence of the nanosized xerogel Zn2SiO4:Mn2+ in pores of anodic alumina. Phys. Solid State 2016, 58, 2062–2067. [Google Scholar] [CrossRef]
- Korzhik, M.V. On the limit of the accuracy of time stamp at the detection of annihilation g-quanta with a scintillation detector. J. BSU Phys. 2021, 2, 96–101. [Google Scholar] [CrossRef]
- Wilcox, P.S.; Westwood, W.D. Anodic Oxidation of Tantalum. Can. J. Phys. 1976, 49, 1543–1548. [Google Scholar] [CrossRef]
- Lee, H.; Kumbhar, V.S.; Lee, J.; Choi, Y.; Lee, K. Highly reversible crystal transformation of anodized porous V2O5 nanostructures for wide potential window high-performance supercapacitors. Electrochim. Acta 2020, 334, 135618. [Google Scholar] [CrossRef]
- Gies, M.; Rempel, T.; Becker, M.; Polity, A. Advantageous optical characteristics of tantalum vanadium oxide as counter electrode in electrochromic devices. J. Mater. Sci. 2022, 57, 12810–12823. [Google Scholar] [CrossRef]
- Fialho, L.; Almeida Alves, C.F.; Marques, L.S.; Carvalho, S. Development of stacked porous tantalum oxide layers by anodization. Appl. Surf. Sci. 2020, 511, 145542. [Google Scholar] [CrossRef]
- McQuaig, M.K.; Toro, A.; Van Geertruyden, W.; Misiolek, W.Z. The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide. J. Mater. Sci. 2011, 46, 243–253. [Google Scholar] [CrossRef]
- Chu, S.Z.; Wada, K.; Inoue, S.; Todoroki, S. Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate. J. Electrochem. Soc. 2002, 149, B321. [Google Scholar] [CrossRef]
- Chu, S.Z.; Wada, K.; Inoue, S.; Todoroki, S. Fabrication and characteristics of nanostructures on glass by Al anodization and electrodeposition. Electrochim. Acta 2003, 48, 3147–3153. [Google Scholar] [CrossRef]
- Chernyakova, K.; Vrublevsky, I.; Jagminas, A.; Klimas, V. Effect of anodic oxygen evolution on cell morphology of sulfuric acid anodic alumina films. J. Solid State Electrochem. 2021, 25, 1453–1460. [Google Scholar] [CrossRef]
- Peitao, G.; Zhilin, X.; Yiyu, X.; Caihu, H.; Lixin, Z. Morphology and transmittance of porous alumina on glass substrate. Appl. Surf. Sci. 2011, 257, 3307–3312. [Google Scholar] [CrossRef]
- Chu, S.Z.; Wada, K.; Inoue, S.; Todoroki, S. Fabrication of oxide nanostructures on glass by aluminum anodization and sol–gel process. Surf. Coat. Tech. 2003, 169–170, 190–194. [Google Scholar] [CrossRef]
- Gapusan, R.B.; Mones, E.S.; Vasquez, M.R. Fabrication of transparent conducting aluminum thin film via anodization-etching of thermally evaporated aluminum on glass. AIP Conf. Proceed. 2021, 2382, 020008. [Google Scholar]
- Rabin, O.; Herz, P.R.; Lin, Y.-M.; Akinwande, A.I.; Cronin, S.B.; Dresselhaus, M.S. Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass. Adv. Funct. Mater. 2003, 13, 631–638. [Google Scholar] [CrossRef]
- Foong, T.R.B.; Sellinger, A.; Hu, X. Origin of the Bottlenecks in Preparing Anodized Aluminum Oxide (AAO) Templates on ITO Glass. ACS Nano 2008, 2, 2250–2256. [Google Scholar] [CrossRef]
- Taheriniya, S.; Parhizgar, S.S.; Sari, A.H. Investigating the effect of sputtering conditions on the physical properties of aluminum thin film and the resulting alumina template. Res. Phys. 2018, 9, 1428–1435. [Google Scholar] [CrossRef]
- Fan, D.; Ding, G.; Shen, W.; Zheng, M. Anion impurities in porous alumina membranes: Existence and functionality. Microporous Mesoporous Mater. 2007, 100, 154–159. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, Q. Influence of sulfosalicylic acid in the electrolyte on the optical properties of porous anodic alumina membranes. Phys. Lett. A 2004, 333, 328–333. [Google Scholar] [CrossRef]
- Xu, W.; Chen, H.; Zheng, M.; Ding, G.; Shen, W. Optical transmission spectra of ordered porous alumina membranes with different thicknesses and porosities. Opt. Mater. 2006, 28, 1160–1165. [Google Scholar] [CrossRef]
- Jeon, C.; Kim, D.; Lee, Y.; Han, J.; Choi, Y.; Bu, S.; Shin, H.; Yoon, S. Strong pore-size dependence of the optical properties in porous alumina membranes. J. Korean Phys. Soc. 2013, 63, 1789–1793. [Google Scholar] [CrossRef]
- Choudhari, K.; Kulkarni, S.D.; Unnikrishnan, V.; Sinha, R.K.; Santhosh, C.; George, S.D. Optical characterizations of nanoporous anodic alumina for thickness measurements using interference oscillations. Nano-Struct. Nano-Obj. 2019, 19, 100354. [Google Scholar] [CrossRef]
- Podhorodecki, A.; Gaponenko, N.V.; Zatryb, G.; Molchan, I.S.; Motyka, M.; Serafinczuk, J.; Golacki, L.W.; Khoroshko, L.S.; Misiewicz, J.; Thompson, G.E. Ion–ion interaction in two-dimensional nanoporous alumina filled with cubic YAlO3: Tb3+ matrix. J. Phys. D Appl. Phys. 2013, 46, 355302. [Google Scholar] [CrossRef] [Green Version]
- Choudhari, K.S.; Choi, C.-H.; Chidangil, S.; George, S.D. Recent Progress in the Fabrication and Optical Properties of Nanoporous Anodic Alumina. Nanomaterials 2022, 12, 444. [Google Scholar] [CrossRef]
- Golovan’, L.A.; Kashkarov, P.K.; Timoshenko, V.Y. Form birefringence in porous semiconductors and dielectrics: A review. Crystallogr. Rep. 2007, 52, 672–685. [Google Scholar] [CrossRef]
- Huang, K.; Li, Y.; Wu, Z.; Li, C.; Lai, H.; Kang, J. Asymmetric light reflectance effect in AAO on glass. Opt. Express 2011, 19, 1301–1309. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Bondaruk, A.A.; Dashkevich, E.S.; Shimanovich, D.L.; Razanau, I.U.; Zubar, T.I.; Yakimchuk, D.V.; Dong, M.G.; Sayyed, M.I.; et al. The Interrelation of Synthesis Conditions and Wettability Properties of the Porous Anodic Alumina Membranes. Nanomaterials 2022, 12, 2382. [Google Scholar] [CrossRef] [PubMed]
- Vorobjova, A.A.; Vorobjova, A.I.; Tishkevich, D.I.; Outkina, E.A.; Shimanovich, D.L.; Razanau, I.U.; Zubar, T.I.; Bondaruk, A.A.; Zheleznova, E.K.; Dong, M.; et al. A Study of Ta2O5 Nanopillars with Ni Tips Prepared by Porous Anodic Alumina through-Mask Anodization. Nanomaterials 2022, 12, 1344. [Google Scholar] [CrossRef] [PubMed]
- Vorobjova, A.; Tishkevich, D.; Shimanovich, D.; Zubar, T.; Astapovich, K.; Kozlovskiy, A.; Zdorovets, M.; Zhaludkevich, A.; Lyakhov, D.; Michels, D.; et al. The influence of the synthesis conditions on the magnetic behavior of the densely packed arrays of Ni nanowires in porous anodic alumina membranes. RSC Adv. 2021, 11, 3952–3962. [Google Scholar] [CrossRef] [PubMed]
- Tishkevich, D.I.; Vorobjova, A.I.; Vinnik, D.A. Formation and corrosion behavior of Nickel/Alumina nanocomposites. Solid State Phenom. 2020, 299, 100–106. [Google Scholar] [CrossRef]
- Vorobjova, A.I.; Shimanovich, D.L.; Sycheva, O.A.; Ezovitova, T.I.; Tishkevich, D.I.; Trykhanov, A.V. Studying the Thermodynamic Properties of Composite Magnetic Material Based on Anodic Alumina. Russ. Microelectron. 2019, 48, 107–118. [Google Scholar] [CrossRef]
- Tishkevich, D.; Vorobjova, A.; Shimanovich, D.; Kaniukov, E.; Kozlovskiy, A.; Zdorovets, M.; Vinnik, D.; Turutin, A.; Kubasov, I.; Kislyuk, A.; et al. Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane. Nanomaterials 2021, 11, 1775. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Trukhanov, A.V. Thermal stability of nano-crystalline nickel electrodeposited into porous alumina. Solid State Phenom. 2020, 299, 281–286. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Vinnik, D.A. Template Assisted Ni Nanowires Fabrication. Mater. Sci. Forum 2019, 946, 235–241. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Shimanovich, D.L.; Vinnik, D.A.; Zubar, T.I.; Kozlovskiy, A.L.; Zdorovets, M.V.; Yakimchuk, D.V.; Trukhanov, S.V.; Trukhanov, A.V. Formation and corrosion properties of Ni-based composite material in the anodic alumina porous matrix. J. Alloys Compd. 2019, 804, 139–146. [Google Scholar] [CrossRef]
- Vorobjova, A.I.; Tishkevich, D.; Shimanovich, D.; Zdorovets, M. Electrochemical Behaviour of Ti/Al2O3/Ni Nanocomposite Material in Artificial Physiological Solution: Prospects for Biomedical Application. Nanomaterials 2020, 10, 173. [Google Scholar] [CrossRef] [Green Version]
- Shimanovich, D.L.; Vorobjova, A.I.; Tishkevich, D.I. Preparation and morphology-dependent wettability of porous alumina membranes. Beilstein J. Nanotechnol. 2018, 9, 1423–1436. [Google Scholar] [CrossRef]
- Kushwaha, M.K. A comparative Study of Different Electrolytes for Obtaining Thick and Well-ordered nano-porous Anodic Aluminium Oxide (AAO) Films. Proc. Mater. Sci. 2014, 5, 1266–1273. [Google Scholar] [CrossRef] [Green Version]
- Myung, N.V.; Lim, J.; Fleurial, J.-P.; Yun, M.; West, W.; Choi, D. Alumina nanotemplate fabrication on silicon substrate. Nanotechnology 2004, 15, 833–838. [Google Scholar] [CrossRef]
- Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 1983, 16, 1214–1222. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-González, J.; Díaz-Parralejo, A.; Ortiz, A.L.; Guiberteau, F. Determination of optical properties in nanostructured thin films using the Swanepoel method. Appl. Surf. Sci. 2006, 252, 6013–6017. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Hotta, K.; Teramae, N. Optical Waveguide Sensor Based on a Porous Anodic Alumina/Aluminum Multilayer Film. Anal. Chem. 2009, 81, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Gervais, F. Handbook of Optical Constants of Solids II; Palik, E.D., Ed.; Academic Press, Inc.: Orlando, FL, USA, 1991; pp. 761–775. [Google Scholar]
- Chen, J.; Wang, B.; Yang, Y.; Shi, Y.; Xu, G.; Cui, P. Porous anodic alumina with low refractive index for broadband graded-index antireflection coatings. Appl. Opt. 2012, 51, 6839–6843. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Chen, F.; Zhang, F.; Zhang, H.L.; Zhang, Z.; Wang, J.; Wang, S.W.; Huang, Z.R. Hard transparent AlON ceramic for visible/IR windows. Int. J. Refract. Met. Hard Mater. 2013, 39, 38–43. [Google Scholar] [CrossRef]
- Bousslama, W.; Sieber, B.; Elhouichet, H.; Gelloz, B.; Addad, A.; Férid, M. Enhancement of the intensity ratio of ultraviolet to visible luminescence with increased excitation in ZnO nanoparticles deposited on porous anodic alumina. J. Phys. D Appl. Phys. 2013, 46, 505104. [Google Scholar] [CrossRef]
- Stepanova, L.S.; Orekhovskaya, T.I.; Gaponenko, N.V.; Prislopski, S.Y. Terbium luminescence deposited from solution of terbium nitrate on porous anodic alumina. Dokl. BGUIR 2010, 6, 85–89. [Google Scholar]
- Vimont, A.; Thibault-Starzyk, F.; Daturi, M. Analysing and understanding the active site by IR spectroscopy. Chem. Soc. Rev. 2010, 39, 4928–4950. [Google Scholar] [CrossRef] [PubMed]
- Mahon, N.S.; Zelenyak, T.Y.; Korolik, O.V.; Gladyshev, P.P.; Mazanik, A.V. Influence of pyridine treatment on the optical properties of organic-inorganic perovskite films. J. BSU Phys. 2019, 2, 66–72. [Google Scholar] [CrossRef]
- Althues, H.; Henle, J.; Kaskel, S. Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 2007, 36, 1454–1465. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Film Composition * | Anodizing Mode | Thermal Treatment | Orderliness of Porous Oxide | Refractive Index (Calculation) | Film Thickness, μm (Calculation) | Film Thickness, μm (SEM) |
---|---|---|---|---|---|---|---|
1 | TaxOy/Al2O3 | 0.3 M H2C2O4, 60 V, 7 °C | 100 °C, 30 min | quasi-ordered | 1.526 | 1.98 | 1.82 |
2 | TaxOy/Al2O3 | 0.3 M H2C2O4, 60 V, 7 °C | 450 °C, 60 min | quasi-ordered | 1.524 | 1.69 | 1.81 |
3 | VxOy/Al2O3 | 0.3 M H2C2O4, 60 V, 7 °C | 100 °C, 30 min | quasi-ordered | 1.521 | 1.98 | 1.68 |
4 | Al2O3 | 0.3 M H2C2O4, 60 V, 7 °C | 100 °C, 30 min | quasi-ordered | 1.521 | 1.45 | 1.33 |
5 | Al2O3 | 1.2 M H2SO4 + 0.6 M H2C2O4 20 V, 12 °C | 100 °C, 30 min | non-ordered | 1.710 | 2.08 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoroshko, L.S.; Baglov, A.V.; Orekhovskaya, T.I.; Trukhanov, S.V.; Tishkevich, D.I.; Trukhanov, A.V.; Raichenok, T.F.; Kopots, A.I. Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates. Coatings 2022, 12, 1678. https://doi.org/10.3390/coatings12111678
Khoroshko LS, Baglov AV, Orekhovskaya TI, Trukhanov SV, Tishkevich DI, Trukhanov AV, Raichenok TF, Kopots AI. Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates. Coatings. 2022; 12(11):1678. https://doi.org/10.3390/coatings12111678
Chicago/Turabian StyleKhoroshko, Liudmila S., Aleksey V. Baglov, Taisa I. Orekhovskaya, Sergei V. Trukhanov, Daria I. Tishkevich, Alex V. Trukhanov, Tamara F. Raichenok, and Anatoly I. Kopots. 2022. "Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates" Coatings 12, no. 11: 1678. https://doi.org/10.3390/coatings12111678
APA StyleKhoroshko, L. S., Baglov, A. V., Orekhovskaya, T. I., Trukhanov, S. V., Tishkevich, D. I., Trukhanov, A. V., Raichenok, T. F., & Kopots, A. I. (2022). Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates. Coatings, 12(11), 1678. https://doi.org/10.3390/coatings12111678