Annealing Temperature on Contact Properties between Nickel Film and Hydrogen-Terminated Single Crystal Diamond
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Isberg, J.; Hammersberg, J.; Johansson, E.; Wikstrom, T.; Twitchen, D.; Whitehead, A.; Coe, S.; Scarsbrook, G. High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond. Science 2002, 297, 1670–1672. [Google Scholar] [CrossRef] [PubMed]
- Geis, M. Growth of device-quality homoepitaxial diamond thin films. Mater. Res. Soc. Symp. Proc. 1990, 162, 15. [Google Scholar] [CrossRef]
- Wort, C.; Balmer, R.S. Diamond as an electronic material. Mater. Today 2008, 11, 22–28. [Google Scholar] [CrossRef]
- Reggiani, L.; Bosi, S.; Canali, C.; Nava, F.; Kozlov, S.F. Hole-drift velocity in natural diamond. Phys. Rev. B 1981, 23, 3050. [Google Scholar] [CrossRef]
- Wang, W.; Hu, C.; Li, F.; Li, S.; Liu, Z.; Wang, F.; Fu, J.; Wang, H. Palladium ohmic contact on hydrogen-terminated single crystal diamond film. Diam. Relat. Mater. 2015, 59, 90. [Google Scholar] [CrossRef]
- Zhao, D.; Li, F.; Liu, Z.; Chen, X.; Wang, Y.; Shao, G.; Zhu, T.; Zhang, M.; Zhang, J.; Wang, J.; et al. Effects of rapid thermal annealing on the contact of tungsten/p-diamond. Appl. Surf. Sci. 2018, 443, 361–366. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J.; Qi, C.; Cao, Z.; Kong, Y.; Chen, T. High frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Device Lett. 2018, 39, 1373–1376. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, X.; Li, S.; Zhao, D.; Shao, G.; Zhu, T.; Fu, J.; Zhang, P.; Chen, X.; Li, F.; et al. Ohmic contact between iridium film and hydrogen-terminated single crystal diamond. Sci. Rep. 2017, 7, 12157. [Google Scholar]
- Kitabayashi, Y.; Kudo, T.; Tsuboi, H.; Yamada, T.; Xu, D.; Shibata, M.; Matsumura, D.; Hayashi, Y.; Syamsul, M.; Inaba, M.; et al. Normally-Off C–H Diamond MOSFETs With Partial C–O Channel Achieving 2-kV Breakdown Voltage. IEEE Electron Device Lett. 2017, 38, 363–366. [Google Scholar]
- Wang, W.; Fu, K.; Hu, C.; Li, F.; Liu, Z.; Li, S.; Lin, F.; Fu, J.; Wang, J.; Wang, H. Diamond based field-effect transistors with SiNx and ZrO2 double dielectric layers. Diam. Relat. Mater. 2016, 69, 237–240. [Google Scholar] [CrossRef]
- Kawarada, H.; Yamada, T.; Xu, D.; Tsuboi, H.; Saito, T.; Hiraiwa, A. Wide Temperature (10 K–700 K) and High Voltage (~1000V) Operation of C-H Diamond MOSFETs for Power Electronics Application. In Proceedings of the 2014 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014. [Google Scholar]
- Kawarada, H.; Tsuboi, H.; Naruo, T.; Yamada, T.; Xu, D.; Daicho, A.; Saito, T.; Hiraiwa, A. CH surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Appl. Phys. Lett. 2014, 105, 013510. [Google Scholar] [CrossRef]
- Imanishi, S.; Horikawa, K.; Oi, N.; Okubo, S.; Kageura, T.; Hiraiwa, A.; Kawarada, H. 3.8 W/mm RF Power Density for ALD Al2O3-Based Two-Dimensional Hole Gas Diamond MOSFET Operating at Saturation Velocity. IEEE Electron Device Lett. 2019, 40, 279–282. [Google Scholar] [CrossRef]
- Saha, N.; Kasu, M. Heterointerface properties of diamond MOS structures studied using capacitance–voltage and conductance–frequency measurements. Diam. Relat. Mater. 2019, 91, 219–224. [Google Scholar] [CrossRef]
- Liu, J.; Liao, M.; Imura, M.; Oosato, H.; Watanabe, E.; Tanaka, A.; Iwai, H.; Koide, Y. Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors. J. Appl. Phys. 2013, 114, 084108. [Google Scholar] [CrossRef]
- Verona, C.; Ciccognani, W.; Colangeli, S.; Pietrantonio, F.D. Gate–source distance scaling effects in H-terminated diamond MESFETs. IEEE Trans. Electron Devices 2015, 62, 1150–1156. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, J.; Sang, L.; Liao, M.; Coathup, D.; Imura, M.; Shi, B.; Gu, C.; Koide, Y.; Ye, H. Assembly of a high-dielectric constant thin TiOx layer directly on H-terminated semiconductor diamond. Appl. Phys. Lett. 2016, 108, 012105. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Chang, X.; Zhang, X.; Fu, J.; Liu, J.; Zhao, D.; Shao, G.; Fan, S.; Bu, R.; et al. Hydrogen-terminated diamond field-effect transistor with AlOx dielectric layer formed by autoxidation. Sci. Rep. 2019, 9, 5192. [Google Scholar] [CrossRef] [Green Version]
- Kunze, M.; Vescan, A.; Dollinger, G.; Bergmaier, A.; Kohn, E. δ-Doping in diamond. Carbon 1999, 37, 787–791. [Google Scholar] [CrossRef]
- El-Hajj, H.; Denisenko, A.; Bergmaier, A.; Dollinger, G.; Kubovic, M.; Kohn, E. Characteristics of boron δ-doped diamond for electronic applications. Diam. Relat. Mater. 2008, 17, 409–414. [Google Scholar] [CrossRef]
- Gu, C.; Tu, J. One-Step Fabrication of Nanostructured Ni Film with Lotus Effect from Deep Eutectic Solvent. Langmuir 2011, 27, 10132–10140. [Google Scholar] [CrossRef]
- Gu, C.; Lian, J.; He, J.; Jiang, Z.; Jiang, Q. High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surf. Coat. Technol. 2006, 200, 5413–5418. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, Y.; Huang, X.; Zhong, K.; Chen, Z.; Huang, Z. Magnetism and work function of Ni-Cu alloys as metal gates. Rare Metals 2012, 31, 130–134. [Google Scholar] [CrossRef]
- Baranauskas, V.; Li, B.; Peterlevitz, A.; Tosin, M.; Durrant, S. Nitrogen-doped diamond films. J. Appl. Phys. 1999, 85, 7455. [Google Scholar] [CrossRef]
- Michael, W.; Jonathan, C. Hole Traps in Natural Type IIb Diamond. IEEE Trans. Electron Devices 1997, 44, 1514–1522. [Google Scholar]
- Davydova, M.; Taylor, A.; Hubík, P.; Fekete, L.; Klimša, L.; Trémouilles, D.; Soltani, A.; Mortet, V. Characteristics of zirconium and niobium contacts on boron-doped diamond. Diam. Relat. Mater. 2018, 83, 184–189. [Google Scholar] [CrossRef]
- Nakanishi, J.; Ostuki, A.; Oku, T. Formation of ohmic contacts to p-type diamond using carbide forming metals. J. Appl. Phys. 1994, 76, 2293–2298. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Zhang, S.; Chen, W.; Yan, S.; Ma, W.; Wang, H.-X. Annealing Temperature on Contact Properties between Nickel Film and Hydrogen-Terminated Single Crystal Diamond. Coatings 2020, 10, 876. https://doi.org/10.3390/coatings10090876
Zhang P, Zhang S, Chen W, Yan S, Ma W, Wang H-X. Annealing Temperature on Contact Properties between Nickel Film and Hydrogen-Terminated Single Crystal Diamond. Coatings. 2020; 10(9):876. https://doi.org/10.3390/coatings10090876
Chicago/Turabian StyleZhang, Pengfei, Shaopeng Zhang, Weidong Chen, Shufang Yan, Wen Ma, and Hong-Xing Wang. 2020. "Annealing Temperature on Contact Properties between Nickel Film and Hydrogen-Terminated Single Crystal Diamond" Coatings 10, no. 9: 876. https://doi.org/10.3390/coatings10090876
APA StyleZhang, P., Zhang, S., Chen, W., Yan, S., Ma, W., & Wang, H.-X. (2020). Annealing Temperature on Contact Properties between Nickel Film and Hydrogen-Terminated Single Crystal Diamond. Coatings, 10(9), 876. https://doi.org/10.3390/coatings10090876