Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Microhardness
3.3. Wear Resistance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, J.; Liu, S.; Yu, S.; Yu, X.; Fan, D. Arc deposition of wear resistant layer TiN on Ti6Al4V using simultaneous feeding of nitrogen and wire. Surf. Coat. Technol. 2020, 381, 125141. [Google Scholar] [CrossRef]
- Fatoba, O.S.; Adesina, O.S.; Popoola, A.P.I. Evaluation of microstructure, microhardness, and electrochemical properties of laser-deposited Ti-Co coatings on Ti-6Al-4V Alloy. Int. J. Adv. Manuf. Technol. 2018, 97, 2341–2350. [Google Scholar] [CrossRef]
- Fu, S.; Yang, L.; Wang, P.; Wang, S.; Li, Z. Comparison of the microstructure evolution and wear resistance of Ti6Al4V composite coatings reinforced by hard pure or Ni-plated cubic boron nitride particles prepared with laser cladding on a Ti6Al4V substrate. Coatings 2020, 10, 702. [Google Scholar] [CrossRef]
- Sokolov, P.; Aleshchenko, A.; Koshmin, A.; Cheverikin, V.; Petrovskiy, P.; Travyanov, A.; Sova, A. Effect of hot rolling on structure and mechanical properties of Ti-6Al-4V alloy parts produced by direct laser deposition. Int. J. Adv. Manuf. Technol. 2020, 107, 1–9. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.; Bai, P.; Du, W.; Li, Y.; Yang, X.; Wang, Q. In-situ synthesis of TiC/graphene/Ti6Al4V composite coating by laser cladding. Mater. Lett. 2020, 270, 127711. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Jiang, Y.; Kang, D.; Juan, Y.; Lu, Z. Investigation into corrosion and wear behaviors of laser-clad coatings on Ti6Al4V. Mater. Res. Express 2020, 7, 016587. [Google Scholar] [CrossRef]
- Xu, H.; Xing, H.; Dong, A.; Du, D.; Wang, D.; Huang, H.; Zhu, G.; Shu, D.; Sun, B.; She, H.; et al. Investigation of gum metal coating on Ti6Al4V plate by direct laser deposition. Surf. Coat. Technol. 2019, 363, 161–169. [Google Scholar] [CrossRef]
- Kumar, S.; Mandal, A.; Das, A.K.; Dixit, A.R. Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy. Surf. Coat. Technol. 2018, 349, 37–49. [Google Scholar]
- Zhou, Z.; Liu, X.; Zhuang, S.; Yang, X.; Wang, M.; Sun, C. Preparation and high temperature tribological properties of laser in-situ synthesized self-lubricating composite coatings containing metal sulfides on Ti6Al4V alloy. Appl. Surf. Sci. 2019, 481, 209–218. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chen, C.; Liu, J.; Zhao, L.; Dai, J. Fabrication of Co-based coatings on titanium alloy by laser cladding with CeO2 addition. Mater. Manuf. Process. 2016, 31, 1461–1467. [Google Scholar] [CrossRef]
- Adesina, O.S.; Popoola, A.P.I.; Pityana, S.L.; Oloruntoba, D.T. Microstructural and tribological behavior of in situ synthesized Ti/Co coatings on Ti-6Al-4V alloy using laser surface cladding technique. Int. J. Adv. Manuf. Technol. 2018, 95, 1265–1280. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, H. Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy. Appl. Surf. Sci. 2005, 243, 278–286. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chen, C.; Dai, J. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V. Mater. Des. 2015, 80, 174–181. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Liu, J.; Chen, C.; Dai, J.; Zhao, Z. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V. Opt. Laser Technol. 2017, 92, 156–162. [Google Scholar] [CrossRef]
- Adesina, O.S.; Obadele, B.A.; Farotade, G.A.; Isadare, D.A.; Adediran, A.A.; Ikubanni, P.P. Influence of phase composition and microstructure on corrosion behavior of laser based Ti–Co–Ni ternary coatings on Ti-6Al-4V alloy. J. Alloys Compd. 2020, 827, 154245. [Google Scholar] [CrossRef]
- Hu, L.; Li, J.; Lv, Y.; Tao, Y. Corrosion behavior of laser-clad coatings fabricated on Ti6Al4V with different contents of TaC addition. Rare Met. 2020, 39, 436–447. [Google Scholar] [CrossRef]
- Chen, T.; Liu, D.; Wu, F.; Wang, H. Effect of CeO2 on microstructure and wear resistance of TiC bioinert coatings on Ti6Al4V alloy by laser cladding. Materials 2018, 11, 58. [Google Scholar] [CrossRef]
- Li, W.; Xu, P.; Wang, Y.; Zou, Y.; Gong, H.; Lu, F. Laser synthesis and microstructure of micro- and nano-structured WC reinforced Co-based cladding layers on titanium alloy. J. Alloys Compd. 2018, 749, 10–22. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Wang, P.; Li, H.; Yang, H.; Ye, Y.; Li, Z. Microstructural evolution and abrasive resistance of WC7Co ceramic particle-reinforced Ti6Al4V composite coating prepared by pulse laser cladding. J. Iron Steel Res. Int. 2020, 27, 228–237. [Google Scholar] [CrossRef]
- Li, N.; Xiong, Y.; Xiong, H.; Shi, G.; Blackburn, J.; Liu, W.; Qin, R. Microstructure, formation mechanism and property characterization of Ti + SiC laser cladded coatings on Ti6Al4V alloy. Mater. Charact. 2019, 148, 43–51. [Google Scholar] [CrossRef]
- Li, T.; Li, L.; Qin, J.; Chen, F. Corrosion protection of Ti6Al4V by a composite coating with a plasma electrolytic oxidation layer and sol-gel layer filled with graphene oxide. Prog. Org. Coat. 2020, 144, 105632. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kharaziha, M.; Salimijazi, H.R. Double layer graphene oxide-PVP coatings on the textured Ti6Al4V for improvement of frictional and biological behavior. Surf. Coat. Technol. 2019, 374, 656–665. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, T.; Yu, P.; Zhao, Z.; Chen, X.; Zhang, Y.; Chen, F. Effect of graphene oxide additive on tribocorrosion behavior of MAO coatings prepared on Ti6Al4V alloy. Appl. Surf. Sci. 2019, 480, 26–34. [Google Scholar] [CrossRef]
- Liu, W.; Blawert, C.; Zheludkevich, M.L.; Liu, Y.; Talha, M.; Shi, Y.; Chen, L. Effects of graphene nanosheets on the ceramic coatings formed on Ti6Al4V alloy drill pipe by plasma electrolytic oxidation. J. Alloys Compd. 2019, 789, 996–1007. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G.; Li, Z.; Xu, Y.; Zeng, X.; Zhao, S.; Deng, J.; Hu, H.; Zhang, Y.; Ren, T. Microtribological properties of Ti6Al4V alloy treated with self-assembled dopamine and graphene oxide coatings. Tribol. Int. 2019, 137, 46–58. [Google Scholar] [CrossRef]
- Palaniappan, N.; Cole, I.S.; Caballero-Briones, F.; Manickam, S.; Lal, C.; Sathiskumar, J. Neodymium-decorated graphene oxide as a corrosion barrier layer on Ti6Al4V alloy in acidic medium. RSC Adv. 2019, 9, 8537–8545. [Google Scholar] [CrossRef]
- Bulbul, E.; Aksakal, B. Synthesizing and characterization of nano-Graphene Oxide-reinforced Hydroxyapatite Coatings on laser treated Ti6Al4V surfaces. Acta Bioeng. Biomech. 2017, 19, 171–180. [Google Scholar]
- Lei, Y.; Sun, R.; Tang, Y.; Niu, W. Experimental and thermodynamic analysis of laser clad Cr3C2/Ni coatings on a Ti6Al4V substrate produced with different incident laser powers. Lasers Eng. 2015, 32, 207–220. [Google Scholar]
Element | Ti | Al | V | Fe | Others |
---|---|---|---|---|---|
Content (wt.%) | 88.99 | 6.0 | 4.33 | 0.3 | 0.38 |
Element | Co | Cr | Mo | Fe | Others |
---|---|---|---|---|---|
Content (wt.%) | 76.68 | 12.93 | 10.86 | 0.12 | 0.41 |
Parameters | Value |
---|---|
Laser power (W) | 1200 |
Scanning speed (mm/s) | 6 |
Supply speed (r/min) | 1.2 |
Spot size (mm) | 4 |
Spectrum | C | Al | Ti | V | Cr | Co | Mo |
---|---|---|---|---|---|---|---|
1 | 7.01 | 1.91 | 57.27 | 3.66 | 10.10 | 18.01 | 2.04 |
2 | 2.62 | 2.24 | 60.50 | 4.22 | 10.76 | 16.34 | 3.32 |
Spectrum | C | Al | Ti | V | Cr | Co | Mo |
---|---|---|---|---|---|---|---|
1 | 5.38 | 1.21 | 31.42 | 2.52 | 28.71 | 24.73 | 6.03 |
2 | 2.10 | 0.79 | 36.64 | 3.01 | 15.93 | 40.56 | 0.96 |
Different Conditions | Width/mm | Depth/μm |
---|---|---|
0 wt.% GO | 0.90 | 18 |
0.2 wt.% GO | 0.85 | 10 |
0.5 wt.% GO | 0.70 | 10 |
0.8 wt.% GO | 0.90 | 12 |
substrate | 1.05 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, X.; Wu, M.; Cui, C.; Wang, H. Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding. Coatings 2020, 10, 1048. https://doi.org/10.3390/coatings10111048
Miao X, Wu M, Cui C, Wang H. Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding. Coatings. 2020; 10(11):1048. https://doi.org/10.3390/coatings10111048
Chicago/Turabian StyleMiao, Xiaojin, Meiping Wu, Chen Cui, and Hang Wang. 2020. "Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding" Coatings 10, no. 11: 1048. https://doi.org/10.3390/coatings10111048
APA StyleMiao, X., Wu, M., Cui, C., & Wang, H. (2020). Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding. Coatings, 10(11), 1048. https://doi.org/10.3390/coatings10111048