Environmental Dissemination of Selected Antibiotics from Hospital Wastewater to the Aquatic Environment †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Sample Sites, Collection and Preparation
2.3. Solid-Phase Extraction
2.4. Sample Analysis
2.5. Statistical Analysis
3. Results
3.1. Calibration Curve and Quality Assurance
3.2. Antibiotics Quantities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Ethics Approval
References
- Oliveira, T.S.; Al Aukidy, M.; Verlicchi, P. Occurrence of common pollutants and pharmaceuticals in hospital effluents. In Hospital Wastewaters; Verlicchi, P., Ed.; Springer: New York, NY, USA, 2017; pp. 17–32. [Google Scholar]
- Chunhui, Z.; Liangliang, W.; Xiangyu, G.; Xudan, H. Antibiotics in WWTP discharge into the Chaobai River, Beijing. Arch. Environ. Prot. 2016, 42, 48–57. [Google Scholar] [CrossRef]
- O’Neill, J.; By, C.; Neill, J.I.M.O.; O’Neill, J. Securing new drugs for future generations: The pipeline of antibiotics. Rev. Antimicrob. Resist. 2015, 42. [Google Scholar]
- Ekwanzala, M.D.; Dewar, J.B.; Kamika, I.; Momba, M.N.B. Systematic review in South Africa reveals antibiotic resistance genes shared between clinical and environmental settings. Infect. Drug Resist. 2018, 11, 1907–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Soares, A.D.; Adejumo, H.; McDiarmid, M.; Squibb, K.; Blaney, L. Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water. J. Pharm. Biomed. Anal. 2015, 106, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Lien, L.; Hoa, N.; Chuc, N.; Thoa, N.; Phuc, H.; Diwan, V.; Dat, N.; Tamhankar, A.; Lundborg, C. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use—A one year study from Vietnam. Int. J. Environ. Res. Public Health 2016, 13, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben, W.; Qiang, Z.; Adams, C.; Zhang, H.; Chen, L. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography–mass spectrometry. J. Chromatogr. A 2008, 1202, 173–180. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Chen, P.; Ding, R.; Zhang, P.; Li, X. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environ. Pollut. 2014, 193, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A 2013, 1292, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 2008, 8, 1–13. [Google Scholar] [CrossRef]
- Hernández, F.; Sancho, J.V.; Ibáñez, M.; Guerrero, C. Antibiotic residue determination in environmental waters by LC-MS. TrAC Trends Anal. Chem. 2007, 26, 466–485. [Google Scholar] [CrossRef]
- Moreno-Bondi, M.C.; Marazuela, M.D.; Herranz, S.; Rodriguez, E. An overview of sample preparation procedures for LC-MS multiclass antibiotic determination in environmental and food samples. Anal. Bioanal. Chem. 2009, 395, 921–946. [Google Scholar] [CrossRef] [PubMed]
- Conte, D.; Palmeiro, J.K.; da Silva Nogueira, K.; de Lima, T.M.R.; Cardoso, M.A.; Pontarolo, R.; Degaut Pontes, F.L.; Dalla-Costa, L.M. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol. Environ. Saf. 2017, 136, 62–69. [Google Scholar] [CrossRef]
- Martínez-Carballo, E.; González-Barreiro, C.; Scharf, S.; Gans, O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 2007, 148, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Carlson, K. Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS. Anal. Bioanal. Chem. 2007, 387, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- Carraro, E.; Bonetta, S.; Bonetta, S. Hospital wastewater: Existing regulations and current trends in management. In Hospital Wastewaters; Verlicchi, P., Ed.; Springer: New York, NY, USA, 2017; pp. 1–16. [Google Scholar]
- Rossmann, J.; Schubert, S.; Gurke, R.; Oertel, R.; Kirch, W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC–MS/MS. J. Chromatogr. B 2014, 969, 162–170. [Google Scholar] [CrossRef]
- Harrabi, M.; Varela Della Giustina, S.; Aloulou, F.; Rodriguez-Mozaz, S.; Barceló, D.; Elleuch, B. Analysis of multiclass antibiotic residues in urban wastewater in Tunisia. Environ. Nanotechnol. Monit. Manag. 2018, 10, 163–170. [Google Scholar] [CrossRef]
- Zhou, H.; Ying, T.; Wang, X.; Liu, J. Occurrence and preliminarily environmental risk assessment of selected pharmaceuticals in the urban rivers, China. Sci. Rep. 2016, 6, 34928. [Google Scholar] [CrossRef]
- Agunbiade, F.O.; Moodley, B. Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ. Toxicol. Chem. 2016, 35, 36–46. [Google Scholar] [CrossRef]
- Costanzo, S.D.; Murby, J.; Bates, J. Ecosystem response to antibiotics entering the aquatic environment. (Special issue: Catchment to Reef: Water Quality Issues in the Great Barrier Reef Region.). Mar. Pollut. Bull. 2005, 51, 218–223. [Google Scholar] [CrossRef]
- Kanama, K.M.; Daso, A.P.; Mpenyana-Monyatsi, L.; Coetzee, M.A.A. Assessment of pharmaceuticals, personal care products, and hormones in wastewater treatment plants receiving inflows from health facilities in north west province, South Africa. J. Toxicol. 2018, 2018, 3751930. [Google Scholar] [CrossRef]
- Batt, A.L.; Kostich, M.S.; Lazorchak, J.M. Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Anal. Chem. 2008, 80, 5021–5030. [Google Scholar] [CrossRef]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere 2015, 134, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the Aquatic Environment. In Antimicrobial Resistance in the Environment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 325–335. [Google Scholar]
- Ekwanzala, M.D.; Dewar, J.B.; Kamika, I.; Momba, M.N.B. Comparative genomics of vancomycin-resistant Enterococcus spp. revealed common resistome determinants from hospital wastewater to aquatic environments. Sci. Total Environ. 2020, 719, 137275. [Google Scholar] [CrossRef] [PubMed]
- Ekwanzala, M.D.; Dewar, J.B.; Kamika, I.; Momba, M.N.B. Tracking the environmental dissemination of carbapenem-resistant Klebsiella pneumoniae using whole genome sequencing. Sci. Total Environ. 2019, 691, 80–92. [Google Scholar] [CrossRef]
- Kibambe, M.G.; Momba, M.N.B.; Daso, A.P.; Van Zijl, M.C.; Coetzee, M.A.A. Efficiency of selected wastewater treatment processes in removing estrogen compounds and reducing estrogenic activity using the T47D-KBLUC reporter gene assay. J. Environ. Manag. 2020, 260, 110135. [Google Scholar] [CrossRef] [PubMed]
- Kibambe, M.G.; Momba, M.N.B.; Daso, A.P.; Coetzee, M.A.A. Evaluation of the efficiency of selected wastewater treatment processes in removing selected perfluoroalkyl substances (PFASs). J. Environ. Manag. 2020, 255, 109945. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Tong, L.; Li, P.; Wang, Y.; Zhu, K. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere 2009, 74, 1090–1097. [Google Scholar] [CrossRef]
- Birošová, L.; Mackuľak, T.; Bodík, I.; Ryba, J.; Škubák, J.; Grabic, R. Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. Sci. Total Environ. 2014, 490, 440–444. [Google Scholar] [CrossRef]
- Chen, C.; Pankow, C.A.; Oh, M.; Heath, L.S.; Zhang, L.; Du, P.; Xia, K.; Pruden, A. Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments. Environ. Int. 2019, 128, 233–243. [Google Scholar] [CrossRef]
- Li, S.; Huang, Z.; Wang, Y.; Liu, Y.-Q.; Luo, R.; Shang, J.-G.; Liao, Q.-J.-H. Migration of two antibiotics during resuspension under simulated wind–wave disturbances in a water–sediment system. Chemosphere 2018, 192, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, C.G.B.; Mallmann, C.A.; Arsand, D.R.; Mayer, F.M.; Martins, A.F. Determination of Sulfamethoxazole and Trimethoprim and Their Metabolites in Hospital Effluent. CLEAN Soil Air Water 2011, 39, 28–34. [Google Scholar] [CrossRef]
- Pena, A.; Paulo, M.; Silva, L.J.G.; Seifrtová, M.; Lino, C.M.; Solich, P. Tetracycline antibiotics in hospital and municipal wastewaters: A pilot study in Portugal. Anal. Bioanal. Chem. 2010, 396, 2929–2936. [Google Scholar] [CrossRef] [PubMed]
- Green, S.; Tillotson, G. Use of ciprofloxacin in developing countries. Pediatr. Infect. Dis. J. 1997, 16, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dechesne, A.; He, Z.; Madsen, J.S.; Nesme, J.; Sørensen, S.J.; Smets, B.F. Estimating the transfer range of plasmids encoding antimicrobial resistance in a wastewater treatment plant microbial community. Environ. Sci. Technol. Lett. 2018, 5, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; An, X.; Li, H.; Su, J.; Ma, Y.; Zhu, Y.-G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 2016, 92–93, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Urra, J.; Alkorta, I.; Mijangos, I.; Epelde, L.; Garbisu, C. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Sci. Total Environ. 2019, 647, 1410–1420. [Google Scholar] [CrossRef]
- Ding, R.; Zhang, P.; Seredych, M.; Bandosz, T.J. Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents. Water Res. 2012, 46, 4081–4090. [Google Scholar] [CrossRef]
- Moretti, S.M.L.; Bertoncini, E.I.; Abreu-Junior, C.H. Composting sewage sludge with green waste from tree pruning. Sci. Agric. 2015, 72, 432–439. [Google Scholar] [CrossRef]
- Nadimpalli, M.; Delarocque-Astagneau, E.; Love, D.C.; Price, L.B.; Huynh, B.-T.; Collard, J.-M.; Lay, K.S.; Borand, L.; Ndir, A.; Walsh, T.R.; et al. Combating global antibiotic resistance: Emerging one health concerns in lower- and middle-income countries. Clin. Infect. Dis. 2018, 66, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Golet, E.M.; Xifra, I.; Siegrist, H.; Alder, A.C.; Giger, W. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 2003, 37, 3243–3249. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Tavengwa, N.T.; Chimuka, L. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. J. Environ. Manag. 2017, 193, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Manallack, D.T. The pK(a) distribution of drugs: Application to drug discovery. Perspect. Medicin. Chem. 2007, 1, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Polesel, F.; Andersen, H.R.; Trapp, S.; Plósz, B.G. Removal of antibiotics in biological wastewater treatment systems—A critical assessment using the activated sludge modeling framework for xenobiotics (ASM-X). Environ. Sci. Technol. 2016, 50, 10316–10334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diwan, V.; Hanna, N.; Purohit, M.; Chandran, S.; Riggi, E.; Parashar, V.; Tamhankar, A.; Stålsby Lundborg, C. Seasonal variations in water-quality, antibiotic residues, resistant bacteria and antibiotic resistance genes of Escherichia coli isolates from water and sediments of the Kshipra River in Central India. Int. J. Environ. Res. Public Health 2018, 15, 1281. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Barancheshme, F.; Munir, M. Strategies to combat antibiotic resistance in the wastewater treatment plants. Front. Microbiol. 2018, 8, 2603. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar] [CrossRef]
- Pei, R.; Kim, S.-C.; Carlson, K.H.; Pruden, A. Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 2006, 40, 2427–2435. [Google Scholar] [CrossRef]
- Almakki, A.; Jumas-Bilak, E.; Marchandin, H.; Licznar-Fajardo, P. Antibiotic resistance in urban runoff. Sci. Total Environ. 2019, 667, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edokpayi, J.N.; Odiyo, J.O.; Durowoju, O.S. Impact of wastewater on surface water quality in developing countries: A case study of South Africa. In Water Quality; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Danner, M.-C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics overuse in animal agriculture: A call to action for health care providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef]
- Tatsing Foka, F.E.; Kumar, A.; Ateba, C.N. Emergence of vancomycin-resistant enterococci in South Africa: Implications for public health. S. Afr. J. Sci. 2018, 114, 1–7. [Google Scholar] [CrossRef]
- Lübbert, C.; Baars, C.; Dayakar, A.; Lippmann, N.; Rodloff, A.C.; Kinzig, M.; Sörgel, F. Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection 2017, 45, 479–491. [Google Scholar] [CrossRef]
Antibiotics | Concentrations in ng/L or ng/g for RS | Matrix | Country | References |
---|---|---|---|---|
Azithromycin (AZM) | 85–113 | HW | Spain | [9] |
ND-437 | IW | |||
225–592 | EW | |||
285 | IW | Germany | [17] | |
277 | EW | |||
690.5 | IW | Tunisia | [18] | |
135.45 | EW | |||
ND-67 | RW | China | [19] | |
Ciprofloxacin (CIP) | 13,600–139,000 | RS (in ng/g) | South Africa | [20] |
14,300 | RW | |||
27,100 | IW | |||
14,100 | EW | |||
222 | IW | China | [2] | |
104.6 | EW | |||
90 | IW | Australia | [21] | |
132.2 | EW | |||
41.5 | RW | |||
5329–7494 | HW | Spain | [9] | |
185–613 | IW | |||
ND-147 | EW | |||
422 | IW | Germany | [17] | |
146 | EW | |||
990 | HW | South Africa | [22] | |
4280 | HW | Vietnam | [6] | |
2150 | EW | |||
Clindamycin (CDM) | 184–1465 | HW | Spain | [9] |
14–37 | IW | |||
18–57 | EW | |||
41 | IW | Germany | [17] | |
151 | EW | |||
Doxycycline (DXC) | ND | HW | Spain | [9] |
ND | IW | |||
ND | EW | |||
10–20 | RW | USA | [15] | |
13,000–27,600 | RS (in ng/g) | |||
259 | IW | Germany | [17] | |
ND | EW | |||
Sulfamethoxazole (SMZ) | 60–80 | RW | USA | [15] |
12,000–17,000 | RS (in ng/g) | |||
98–2200 | IW | USA | [23] | |
140 | RW | |||
304 | IW | China | [2] | |
100.4 | EW | |||
65–200 | HW | Spain | [9] | |
ND-528 | IW | |||
19–198 | EW | |||
35,000 | IW | South Africa | [24] | |
ND | EW | |||
515 | IW | Germany | [17] | |
191 | EW | |||
365.5 | IW | Tunisia | [18] | |
126.7 | EW | |||
9800 | HW | Vietnam | [6] | |
6400 | EW |
Antibiotics | Class of Antibiotics | Molar Mass (g/mol) | pKa Values a | Structures |
---|---|---|---|---|
AZM | Macrolide | 748.984 | 12.43, 9.57 | |
CIP | Quinolone | 331.346 | 5.76, 8.68 | |
CDM | Lincosamide | 424.98 | 5.91, 6.74 | |
DXC | Tetracycline | 444.43 | −2.2, 7.75 | |
SMZ | Sulphonamide | 253.279 | 6.16, 1.97 |
Antibiotics | m/z | Products Ions | Rt/min | Linear-Range ng/L |
---|---|---|---|---|
AZM | 748.98 | 749.51 | 7.16 | 10–2000 |
CIP | 331.34 | 332.14 | 3.23 | 10–2000 |
CDM | 424.98 | 425.18 | 4.49 | 10–2000 |
DXC | 444.43 | 443.14 | 4.47 | 10–2000 |
SMZ | 253.27 | 254.05 | 1.43 | 10–2000 |
Antibiotics | r2 | Regression Equation | LoD (ng/L) | LoQ (ng/L) | Mean Recovery (%) |
---|---|---|---|---|---|
AZM | 0.9959 | y = 2.2261x − 15.562 | 0.2 × 10−5 | 0.8 × 10−4 | 94.1 ± 4.1 |
CIP | 0.9902 | y = 0.9879x − 46.064 | 13.5 × 10−5 | 45.0 × 10−4 | 97.4 ± 7.4 |
CDM | 0.9948 | y = 3.6348x + 230.9 | 1.1 × 10−5 | 1.4 × 10−4 | 95.4 ± 5.4 |
DXC | 0.9914 | y = 1.6894x + 493.81 | 8.8 × 10−5 | 29.2 × 10−4 | 95.3 ± 15.3 |
SMZ | 0.9902 | y = 1.6286x + 119.91 | 5.1 × 10−5 | 17.1 × 10−4 | 95.2 ± 5.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekwanzala, M.D.; Lehutso, R.F.; Kasonga, T.K.; Dewar, J.B.; Momba, M.N.B. Environmental Dissemination of Selected Antibiotics from Hospital Wastewater to the Aquatic Environment. Antibiotics 2020, 9, 431. https://doi.org/10.3390/antibiotics9070431
Ekwanzala MD, Lehutso RF, Kasonga TK, Dewar JB, Momba MNB. Environmental Dissemination of Selected Antibiotics from Hospital Wastewater to the Aquatic Environment. Antibiotics. 2020; 9(7):431. https://doi.org/10.3390/antibiotics9070431
Chicago/Turabian StyleEkwanzala, Mutshiene Deogratias, Raisibe Florence Lehutso, Teddy Kabeya Kasonga, John Barr Dewar, and Maggy Ndombo Benteke Momba. 2020. "Environmental Dissemination of Selected Antibiotics from Hospital Wastewater to the Aquatic Environment" Antibiotics 9, no. 7: 431. https://doi.org/10.3390/antibiotics9070431
APA StyleEkwanzala, M. D., Lehutso, R. F., Kasonga, T. K., Dewar, J. B., & Momba, M. N. B. (2020). Environmental Dissemination of Selected Antibiotics from Hospital Wastewater to the Aquatic Environment. Antibiotics, 9(7), 431. https://doi.org/10.3390/antibiotics9070431