Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: Diagnosis, therapeutic considerations and preventative measures.: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet. Dermatol. 2017, 28, 304-e69. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.C.; Coleman, D.C. Staphylococcal cassette chromosome mec: Recent advances and new insights. Int. J. Med. Microbiol. 2013, 303, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Ballhausen, B.; Köck, R.; Kriegeskorte, A. Methicillin resistance in Staphylococcus isolates: The “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int. J. Med. Microbiol. 2014, 304, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.K.; Prager, M.; Munigala, S.; Wallace, M.A.; Kennedy, C.R.; Bommarito, K.M.; Mazuski, J.E.; Burnham, C.A. Prevalence of qacA/B Genes and Mupirocin Resistance among Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates in the Setting of Chlorhexidine Bathing without Mupirocin. Infect. Control Hosp. Epidemiol. 2016, 37, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Research Strategy to Address the Knowledge Gaps on the Antimicrobial Resistance Effects of Biocides; European Commission: Brussels, Belgium, 2010; Available online: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_028.pdf (accessed on 23 February 2019).
- Vali, L.; Davies, S.E.; Lai, L.L.; Dave, J.; Amyes, S.G. Frequency of biocide resistance genes, antibiotic resistance and the effect of chlorhexidine exposure on clinical methicillin-resistant Staphylococcus aureus isolates. J. Antimicrob. Chemother. 2008, 61, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Nienhoff, U.; Kadlec, K.; Chaberny, I.F.; Verspohl, J.; Gerlach, G.F.; Kreienbrock, L.; Schwarz, S.; Simon, D.; Nolte, I. Methicillin-resistant Staphylococcus pseudintermedius among dogs admitted to a small animal hospital. Vet. Microbiol. 2011, 150, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Bergström, A.; Gustafsson, C.; Leander, M.; Fredriksson, M.; Grönlund, U.; Trowald-Wigh, G. Occurrence of methicillin-resistant staphylococci in surgically treated dogs and the environment in a Swedish animal hospital. J. Small Anim. Pract. 2012, 53, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Huerta, B.; Maldonado, A.; Ginel, P.J.; Tarradas, C.; Gómez-Gascón, L.; Astorga, R.J.; Luque, I. Risk factors associated with the antimicrobial resistance of staphylococci in canine pyoderma. Vet. Microbiol. 2011, 150, 302–308. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Künzel, F.; Klang, A.; Wagner, R.; Licka, T.; Grunert, T.; Feßler, A.T.; Geier-Dömling, D.; Rosengarten, R.; Müller, E.; et al. Carriage of meticillin-resistant staphylococci between humans and animals on a small farm. Vet. Dermatol. 2016, 27, 191-e48. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Künzel, F.; Licka, T.; Simhofer, H.; Spergser, J.; Rosengarten, R. Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Vet. Microbiol. 2014, 168, 381–387. [Google Scholar] [CrossRef]
- Loncaric, I.; Künzel, F. Sequence type 398 meticillin-resistant Staphylococcus aureus infection in a pet rabbit. Vet. Dermatol. 2013, 24, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Schoenfelder, S.M.; Lange, C.; Eckart, M.; Hennig, S.; Kozytska, S.; Ziebuhr, W. Success through diversity—How Staphylococcus epidermidis establishes as a nosocomial pathogen. Int. J. Med. Microbiol. 2010, 300, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Kern, A.; Perreten, V. Clinical and molecular features of methicillin-resistant, coagulase-negative staphylococci of pets and horses. J. Antimicrob. Chemother. 2013, 68, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Bagcigil, F.A.; Moodley, A.; Baptiste, K.E.; Jensen, V.F.; Guardabassi, L. Occurrence, species distribution, antimicrobial resistance and clonality of methicillin- and erythromycin-resistant staphylococci in the nasal cavity of domestic animals. Vet. Microbiol. 2007, 121, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Kadlec, K.; Fessler, A.T.; Schwarz, S. Identification and characterization of methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus pettenkoferi from a small animal clinic. Vet. Microbiol. 2013, 167, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Han, J.I.; Yang, C.H.; Park, H.M. Prevalence and risk factors of Staphylococcus spp. carriage among dogs and their owners: A cross-sectional study. Vet. J. 2016, 212, 15–21. [Google Scholar] [CrossRef]
- Davis, J.A.; Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B.; Brousse, J.H.; Gustafson, J.; Kucher, M. Carriage of methicillin-resistant staphylococci by healthy companion animals in the US. Lett. Appl. Microbiol. 2014, 59, 1–8. [Google Scholar] [CrossRef]
- Nemeghaire, S.; Argudín, M.A.; Feßler, A.T.; Hauschild, T.; Schwarz, S.; Butaye, P. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Vet. Microbiol. 2014, 171, 342–356. [Google Scholar] [CrossRef]
- Ruzauskas, M.; Siugzdiniene, R.; Klimiene, I.; Virgailis, M.; Mockeliunas, R.; Vaskeviciute, L.; Zienius, D. Prevalence of methicillin-resistant Staphylococcus haemolyticus in companion animals: A cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Bean, D.C.; Wigmore, S.M.; Wareham, D.W. Draft Genome Sequence of Staphylococcus cohnii subsp. urealyticus Isolated from a Healthy Dog. Genome Announc. 2017, 5, e01628-16. [Google Scholar] [CrossRef] [PubMed]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Grönlund Andersson, U.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: An international multicentre study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Faires, M.C.; Traverse, M.; Tater, K.C.; Pearl, D.L.; Weese, J.S. Methicillin-resistant and -susceptible Staphylococcus aureus infections in dogs. Emerg. Infect. Dis. 2010, 16, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, M.S.; Heir, E.; Leegaard, T.; Wiger, K.; Holck, A. Frequency of disinfectant resistance genes and genetic linkage with beta-lactamase transposon Tn552 among clinical staphylococci. Antimicrob. Agents Chemother. 2002, 46, 2797–2803. [Google Scholar] [CrossRef] [PubMed]
- Couto, N.; Belas, A.; Kadlec, K.; Schwarz, S.; Pomba, C. Clonal diversity, virulence patterns and antimicrobial and biocide susceptibility among human, animal and environmental MRSA in Portugal. J. Antimicrob. Chemother. 2015, 70, 2483–2487. [Google Scholar] [CrossRef]
- Bjorland, J.; Steinum, T.; Kvitle, B.; Waage, S.; Sunde, M.; Heir, E. Widespread distribution of disinfectant resistance genes among staphylococci of bovine and caprine origin in Norway. J. Clin. Microbiol. 2005, 43, 4363–4368. [Google Scholar] [CrossRef]
- Weese, J.S.; Lefebvre, S.L. Risk factors for methicillin-resistant Staphylococcus aureus colonization in horses admitted to a veterinary teaching hospital. Can. Vet. J. 2007, 48, 921–926. [Google Scholar]
- Vincze, S.; Brandenburg, A.G.; Espelage, W.; Stamm, I.; Wieler, L.H.; Kopp, P.A.; Lübke-Becker, A.; Walther, B. Risk factors for MRSA infection in companion animals: Results from a case-control study within Germany. Int. J. Med. Microbiol. 2014, 304, 787–793. [Google Scholar] [CrossRef]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Stalder, G.L.; Hoffmann, D.; Rosengarten, R.; Walzer, C. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. J. Antimicrob. Chemother. 2013, 68, 2222–2225. [Google Scholar] [CrossRef]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Ruppitsch, W.; Lepuschitz, S.; Schauer, B.; Feßler, A.T.; Krametter-Frötscher, R.; Harrison, E.M.; Holmes, M.A.; et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 2019, 230, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Forth Informational Supplement; M100-27; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Schauer, B.; Krametter-Frotscher, R.; Knauer, R.; Ehricht, R.; Monecke, S.; Fessler, A.T.; Schwarz, S.; Grunert, T.; Spergser, J.; Loncaric, I. Diversity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from Austrian ruminants and New World camelids. Vet. Microbiol. 2019, 215, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.M.; Martins, K.B.; Silva, V.R.; Mondelli, A.L.; Cunha, M.L. Correlation of phenotypic tests with the presence of the blaZ gene for detection of beta-lactamase. Braz. J. Microbiol. 2017, 48, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Martineau, F.; Picard, F.J.; Lansac, N.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, T.; Vuković, D.; Dakić, I.; Ježek, P.; Djukić, S.; Dimitrijević, V.; Stepanović, S.; Schwarz, S. Aminoglycoside resistance in members of the Staphylococcus sciuri group. Microb. Drug Resist. 2007, 13, 77–84. [Google Scholar] [CrossRef]
- Argudín, M.A.; Tenhagen, B.A.; Fetsch, A.; Sachsenröder, J.; Käsbohrer, A.; Schroeter, A.; Hammerl, J.A.; Hertwig, S.; Helmuth, R.; Bräunig, J.; et al. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl. Environ. Microbiol. 2011, 77, 3052–3060. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; AgersŁ, Y.; Ahrens, P.; Jørgensen, J.C.; Madsen, M.; Jensen, L.B. Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry. Vet. Microbiol. 2000, 74, 353–364. [Google Scholar] [CrossRef]
- Dale, G.; Langen, H.; Page, M.; Then, R.; Stüber, D. Cloning and Charakterization of a Novel, Plasmid-Encoded Trimethoprim-Resistant Dihydrofolate Reductase from Staphylococcus haemolyticus MUR313. Antimicrob. Agents Chemother. 1995, 39, 1920–1924. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mellmann, A.; Becker, K.; von Eiff, C.; Keckevoet, U.; Schumann, P.; Harmsen, D. Sequencing and staphylococci identification. Emerg. Infect. Dis. 2006, 12, 333–336. [Google Scholar] [CrossRef] [PubMed]
ID | Species | SCCmec | dru Type | Non β-lactam Phenotype ** | Non b-lactam Resistant Genes | QAC Genes *** |
---|---|---|---|---|---|---|
A 36 | S. epidermidis | nt * | dt10a | CIP, AMK, GEN, ERY, CLI | dfrA, erm(C) | qacA/B |
A 39 | S. epidermidis | IV | dt10a | CIP, TET, ERY, CLI | dfrA, erm(C) | qacA/B |
A 40 | S. epidermidis | IV | dt10a | TET, ERY, CLI | dfrA, erm(C), tet(K) | |
A 41 | S. pseudintermedius | II–III | dt9a | CIP, AMK, GEN, ERY, CLI, SXT | aacA-aphD, erm(B), dfrG | |
A 50 | S. epidermidis | nt | dt11a | AMK, GEN, TET, ERY, SXT | msr(A), aacA-aphD, tet(K) drfG, aac(6′)-Ie | smr |
A 57 | S. sciuri | II | dt8b | AMK, GEN, ERY | dfrA, msr(A), aacA-aph, aac(6′)-Ie | |
A 63 | S. warneri | IV | dt10a | ERY, SXT | dfrA, msr(A) | |
A 68 | S. epidermidis | nt | nt | dfrA, aacA-aphD, erm(C) | qacA/B | |
A 72 | S. pseudintermedius | II–III | dt9a | CIP, AMK, GEN, TET, ERY, CLI, SXT | aacA-aphD, tet(K), erm(B), dfrG, aac(6′)-Ie | |
A 73 | S. warneri | IV | dt10a | ERY | msr(A) | smr |
A 112 | S. epidermidis | IV | dt10a | dfrA | ||
A 127 | S. warneri | IV | dt10a | ERY | dfrA, msr(A) | qacA/B, smr |
A 141 | S. cohnii | nt | dt11a | ERY, SXT | msr(A) | |
B 7 | S. lentus | V | dt10a | CIP, GEN, TET, ERY, SXT | aacA-aphD, tet(K), aac(6′)-Ie | |
B 23 | S. epidermidis | nt | nt | CIP, ERY, CLI, SXT | dfrA, erm(C) | |
B 25 | S. epidermidis | IV | dt8b | ERY, CLI | dfrA, erm(C) | qacA/B |
B 27 | S. epidermidis | nt | dt8b | CIP, TET, ERY, CLI | dfrA, msr(A), tet(K) | |
B 37 | S. epidermidis | nt | dt10a | CIP, AMK, GEN, TET, ERY, CLI, SXT | dfrA, aacA-aphD, erm(C), aac(6′)-Ie | qacA/B, smr |
B 49 | S. fleurettii | nt | nt | TET, CHL | tet(K), catpC221 | |
B 50 | S. haemolyticus | nt | dt11c | CIP, AMK, GEN, ERY, CLI, SXT | msr(A), aacA-aphD, erm(C), aac(6′)-Ie | |
C 10 | S. epidermidis | nt | dt10a | ERY, CHL, SXT | dfrA, catpC221 | qacA/B |
162 | S. hominis | I | dt7ah | ERY, CLI, CHL, SXT | erm(C), fusC, catpC221 | smr |
166 | S. hominis | I | dt9a | ERY | msr(A) | qacA/B |
Risk Factor | p Value |
---|---|
Species (dog, cat, rabbit, guinea pig) | 0.664 |
Breed | 0.833 |
Age | 0.182 |
Gender | 0.06 |
Husbandry conditions (indoor/outdoor) | 0.502 |
Recent veterinary health care hospitalization (during the last 6 months) | 0.046 |
Pretreatment with antimicrobial substances (during the last 6 months) | 0.096 |
Close contact | 0.2 |
Owner’s health care profession | 0.223 |
Origin and health status of animals | 0.993 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loncaric, I.; Tichy, A.; Handler, S.; Szostak, M.P.; Tickert, M.; Diab-Elschahawi, M.; Spergser, J.; Künzel, F. Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS. Antibiotics 2019, 8, 36. https://doi.org/10.3390/antibiotics8020036
Loncaric I, Tichy A, Handler S, Szostak MP, Tickert M, Diab-Elschahawi M, Spergser J, Künzel F. Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS. Antibiotics. 2019; 8(2):36. https://doi.org/10.3390/antibiotics8020036
Chicago/Turabian StyleLoncaric, Igor, Alexander Tichy, Silvia Handler, Michael P. Szostak, Mareike Tickert, Magda Diab-Elschahawi, Joachim Spergser, and Frank Künzel. 2019. "Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS" Antibiotics 8, no. 2: 36. https://doi.org/10.3390/antibiotics8020036
APA StyleLoncaric, I., Tichy, A., Handler, S., Szostak, M. P., Tickert, M., Diab-Elschahawi, M., Spergser, J., & Künzel, F. (2019). Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS. Antibiotics, 8(2), 36. https://doi.org/10.3390/antibiotics8020036