Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology?
Abstract
:1. Introduction
2. Cultivation and Identification of Anaerobes
3. Examples of Clinically Relevant Anaerobic Bacteria
3.1. Members of the Bacteroides Fragilis Group
3.2. Members of the Clostridium Genus
4. Antimicrobial Susceptibility Testing of Anaerobes
4.1. General Considerations
4.2. Disk Diffusion Method (Kirby-Bauer Method)
4.3. Broth Microdilution Method
4.4. Agar Dilution Method
4.5. Gradient Tests (E-Test, Spiral Gradient Test)
4.6. Examples of Resistance Detection Using Phenotypic and Genotypic Methods
5. Antibiotic Resistance in Anaerobic Bacteria: The Importance of Surveillance
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AAD | antibiotic associated diarrhoea |
ABC | ATP-binding cassette |
AGNB | anaerobic Gram-negative bacilli |
AIDS | acquired immunodeficiency syndrome |
AMX/CLA | amoxicillin-clavulanic acid |
AMP/SUL | ampicillin-sulbactam |
ASA | Anaerobe Society of the Americas |
AST | antimicrobial susceptibility testing |
ATP | adenosine-triphosphate |
BBA | Brucella blood agar |
BBE | Bacteroides bile esculin agar |
BfPAI | Bacteroides fragilis pathogenicity island |
BL-BLIC | beta-lactam-beta-lactamase inhibitor combination |
BSAC | British Society for Antimicrobial Chemotherapy |
BV | bacterial vaginosis |
Caco-2 | Human epithelial colorectal adenocarcinoma |
CCFA | Cefoxitin-cycloserine fructose agar |
CNA | Colistin-nalidixic acid agar |
CIDT | culture-independent diagnostic testing |
CIP | ciprofloxacin |
CLI | clindamycin |
CLSI | Clinical and Laboratory Standards Institute |
DIN | Deutsches Institut für Normung |
DNA | deoxyribonucleic acid |
EBV | Epstein-Barr virus |
EDTA | ethylenediaminetetraacetic acid |
EPI | efflux pump inhibitor |
EMA | European Medicines Agency |
ENRIA | European Network for Rapid Identification of Anaerobes |
ESGAI | ESCMID Study Group for Anaerobic Infections |
ETBF | enterotoxigenic Bacteroides fragilis |
EUCAST | European Committe for Antimicrobial Susceptibility Testing |
EYA | Egg-yolk agar |
FDA | Food and Drug Administration of the United States |
FX | cefoxitin |
GLC | gas-liquid chromatography |
IBS | irritable bowel syndrome |
HCT-8 | human ileocecal carcinoma |
HGT | horizontal gene transfer |
HT-29 | human colon adenocarcinoma cell line |
ID | identification |
IS | insertion sequence |
IMP | imipenem |
KVLB | Kanamycin-vancomycin laked blood agar |
LDH | lactate-dehydrogenase |
MALDI-TOF MS | matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
MATE | Multi-antimicrobial extrusion protein |
MDCK | Madin Darby Canine Kidney cell line |
MDR | multidrug resistant |
MET | metronidazole |
MIC | minimal inhibitory concentration |
MLS | Macrolide-lincosamide-streptogramin B |
MXF | moxifloxacin |
NCLLS | National Committee for Clinical Laboratory Standards |
PBP | penicillin-binding protein |
PCR | polymerase chain reaction |
PEA | Phenyletyl alcohol agar |
PFOR | pyruvate:ferredoxin oxidoreductase |
PID | pelvic inflammatory disease |
PIP/TAZ | piperacillin-tazobactam |
PRAS | pre-reduced anaerobically sterilised |
QRDR | quionole resistance determining regions |
RND | Resistance nodulation and division |
rRNA | ribosomal ribonucleic acid |
SCFA | short-chained fatty acid |
SGE | spiral gradient endpoint |
SOD | superoxide-dismutase |
SCS | Schaedler blood agar |
SPS | sodium polyanethol sulfonate |
TET | tetracycline |
WGS | whole-genome sequencing |
References
- Nagy, E. Anaerobic Infections Update on Treatment Considerations. Drugs 2010, 70, 841–858. [Google Scholar] [CrossRef] [PubMed]
- Finegold, S.M. Anaerobic Infections: General Concepts. In Principles and Practice of Infectious Diseases; Mandell, G.L., Bennett, J.E., Dolin, R., Eds.; Churchill Livingstone: London, UK, 2000; Volume 2. [Google Scholar]
- Cornaglia, G.; Courcol, R.; Herrmann, J.-L.; Kahlmeter, G.; Peigue-Lafeuille, H.; Jordi, V. European Manual of Clinical Microbiology; European Society for Clinical Microbiology and Infectious Diseases: Basel, Switzerland, 2012; ISBN 978-2-87805-026-4. [Google Scholar]
- Finegold, S.M. Anaerobic Bacteria in Human Disease; Academic Press: New York, NY, USA, 1977; ISBN 978-0-12-256750-6. [Google Scholar]
- Jousimies-Somer, H.; Summanen, P.; Citron, D.M.; Baron, E.J.; Wexler, H.M.; Finegold, S.M. Wadsworth-KTL Anaerobic Bacteriology Manual, 6th ed.; Jousimies-Somer, H., Summanen, P., Citron, D.M., Baron, E.J., Wexler, H.M., Finegold, S.M., Eds.; Star Publishing Company: Belmont, CA, USA, 2003. [Google Scholar]
- Murray, P.R.; Baron, E.J.; Jorgensen, J.H.; Landry, M.L.; Pfaller, M. Manual of Clinical Microbiology, 9th ed.; Murray, P.R., Baron, E.J., Jorgensen, J.H., Landry, M.L., Pfaller, M., Eds.; American Society for Microbiology: Washington, DC, USA, 2007; Volume 1, ISBN 978-1-55581-371-0. [Google Scholar]
- Wells, C.L.; Wilkins, T.D. Clostridia: Sporeforming Anaerobic Bacilli. In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; ISBN 978-0-9631172-1-2. [Google Scholar]
- Jenkins, S.G. Infections due to anaerobic bacteria and the role of antimicrobial susceptibility testing of anaerobes. Rev. Med. Microbiol. 2001, 12, 1–12. [Google Scholar] [CrossRef]
- Salonen, J.H.; Eerola, E.; Meurman, O. Clinical significance and outcome of anaerobic bacteremia. Clin. Infect. Dis. 1998, 26, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.J. Anaerobic bacteremia. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 1996, 23 (Suppl. S1), S97–S101. [Google Scholar] [CrossRef]
- Hecht, D.W. Anaerobes: Antibiotic resistance, clinical significance and the role of susceptibility testing. Anaerobe 2006, 12, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.P.; Sutter, V.L.; Finegold, S.M. Bone infections involving anaerobic bacteria. Medicine (Baltimore) 1978, 57, 279–305. [Google Scholar] [CrossRef] [PubMed]
- Nolla, J.M.; Murillo, O.; Narvaez, J.; Vaquero, C.G.; Lora-Tamayo, J.; Pedrero, S.; Cabo, J.; Ariza, J. Pyogenic arthritis of native joints due to Bacteroides fragilis: Case report and review of the literature. Medicine (Baltimore) 2016, 95, e3962. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, C.L.; Hillier, S.L.; Bass, D.C.; Ness, R.B.; The PID Evaluation and Clinical Health (PEACH). Study Investigators Bacterial Vaginosis and Anaerobic Bacteria Are Associated with Endometritis. Clin. Infect. Dis. 2004, 39, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Gupta, N.; Aparna; Batra, G.; Arora, D.R. Role of anaerobes in acute pelvic inflammatory disease. Indian J. Med. Microbiol. 2003, 21, 189–192. [Google Scholar] [PubMed]
- Peng, Z.; Jin, D.; Kim, H.B.; Stratton, C.W.; Wu, B.; Tang, Y.-W.; Sun, X. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2017, 55, 1998–2008. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.Y.; Elzouki, A.-N. Clostridium difficile infection: A review of the literature. Asian Pac. J. Trop. Med. 2014, 7, S6–S13. [Google Scholar] [CrossRef]
- Janoir, C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 2016, 37, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Terhes, G. Distribution of Clostridium difficile PCR ribotypes in regions of Hungary. J. Med. Microbiol. 2006, 55, 279–282. [Google Scholar] [CrossRef] [PubMed]
- La Scola, B.; Fournier, P.E.; Raoult, D. Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe 2011, 17, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Riordan, T. Human Infection with Fusobacterium necrophorum (Necrobacillosis), with a Focus on Lemierre’s Syndrome. Clin. Microbiol. Rev. 2007, 20, 622–659. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.D.; Kerber, C.A.; Tergin, H.F. Unusual Presentation of Lemierre’s Syndrome Due to Fusobacterium nucleatum. J. Clin. Microbiol. 2003, 41, 3445–3448. [Google Scholar] [CrossRef] [PubMed]
- Brook, I.; Wexler, H.M.; Goldstein, E.J. Antianaerobic antimicrobials: Spectrum and susceptibility testing. Clin. Microbiol. Rev. 2013, 26, 526–546. [Google Scholar] [CrossRef] [PubMed]
- Jousimies-Somer, H.; Summanen, P. Recent taxonomic changes and terminology update of clinically significant anaerobic gram-negative bacteria (excluding spirochetes). Clin. Infect. Dis. 2002, 35, S17–S21. [Google Scholar] [CrossRef] [PubMed]
- Munson, E.; Carroll, K.C. What’s in a Name? New Bacterial Species and Changes to Taxonomic Status from 2012 through 2015. J. Clin. Microbiol. 2017, 55, 24–42. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, D.A.; Shah, H.N. Reclassification of Peptostreptococcus magnus (Prevot 1933) Holdeman and Moore 1972 as Finegoldia magna comb. nov. and Peptostreptococcus micros (Prevot 1933) Smith 1957 as Micromonas micros comb. nov. Anaerobe 1999, 5, 555–559. [Google Scholar] [CrossRef]
- Lawson, P.A.; Citron, D.M.; Tyrrell, K.L.; Finegold, S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prevot 1938. Anaerobe 2016, 40, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, D.A.; Shah, H.N.; Gharbia, S.E.; Rajdendram, D. Proposal to Restrict the Genus Peptostreptococcus (Kluyver & van Niel 1936) to Peptostreptococcus anaerobius. Anaerobe 2000, 6, 257–260. [Google Scholar] [CrossRef]
- Song, Y.L.; Liu, C.X.; McTeague, M.; Finegold, S.M. 16S ribosomal DNA sequence-based analysis of clinically significant gram-positive anaerobic cocci. J. Clin. Microbiol. 2003, 41, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, D.A. Gram-positive anaerobic cocci. Clin. Microbiol. Rev. 1998, 11, 81–120. [Google Scholar] [PubMed]
- Murphy, E.C.; Frick, I.M. Gram-positive anaerobic cocci—Commensals and opportunistic pathogens. FEMS Microbiol. Rev. 2013, 37, 520–553. [Google Scholar] [CrossRef] [PubMed]
- Siezen, R.J.; Kleerebezem, M. The human gut microbiome: Are we our enterotypes? Microb. Biotechnol 2011, 4, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.L.; Gorbach, S.L. Intestinal flora in health and disease. Gastroenterology 1984, 86, 174–193. [Google Scholar] [PubMed]
- Maier, E.; Anderson, R.C.; Roy, N.C. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine. Nutrients 2014, 7, 45–73. [Google Scholar] [CrossRef] [PubMed]
- Duranti, S.; Ferrario, C.; van Sinderen, D.; Ventura, M.; Turroni, F. Obesity and microbiota: An example of an intricate relationship. Genes Nutr. 2017, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Leal-Lopes, C.; Velloso, F.J.; Campopiano, J.C.; Sogayar, M.C.; Correa, R.G. Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies. J. Diabetes Res. 2015, 2015, 284680. [Google Scholar] [CrossRef] [PubMed]
- Bultman, S.J. Emerging roles of the microbiome in cancer. Carcinogenesis 2014, 35, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, N. Microbiome and cancer. Semin. Immunopathol. 2015, 37, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Francescone, R.; Hou, V.; Grivennikov, S.I. Microbiome, inflammation and cancer. Cancer J. 2014, 20, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Shahanavaj, K.; Gil-Bazo, I.; Castiglia, M.; Bronte, G.; Passiglia, F.; Carreca, A.P.; del Pozo, J.L.; Russo, A.; Peeters, M.; Rolfo, C. Cancer and the microbiome: Potential applications as new tumor biomarker. Expert Rev. Anticancer Ther. 2015, 15, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 2015, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Lima-Ojeda, J.M.; Rupprecht, R.; Baghai, T.C. “I Am I and My Bacterial Circumstances”: Linking Gut Microbiome, Neurodevelopment and Depression. Front. Psychiatry 2017, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Han, Y.; Du, J.; Liu, R.; Jin, K.; Yi, W. Microbiota-gut-brain axis and the central nervous system. Oncotarget 2017, 8, 53829–53838. [Google Scholar] [CrossRef] [PubMed]
- Aarts, E.; Ederveen, T.H.A.; Naaijen, J.; Zwiers, M.P.; Boekhorst, J.; Timmerman, H.M.; Smeekens, S.P.; Netea, M.G.; Buitelaar, J.K.; Franke, B.; et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS ONE 2017, 12, e0183509. [Google Scholar] [CrossRef] [PubMed]
- Finegold, S.M. State of the art; microbiology in health and disease. Intestinal bacterial flora in autism. Anaerobe 2011, 17, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, N.B.; Vlamakis, H.; Hayes, K.; Salyers, A.A. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 2001, 67, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. The structure and diversity of human, animal and environmental resistomes. Microbiome 2016, 4, 54. [Google Scholar] [CrossRef] [PubMed]
- Loesche, W.J. Oxygen sensitivity of various anaerobic bacteria. Appl. Microbiol. 1969, 18, 723–727. [Google Scholar] [PubMed]
- Clinical Microbiology Procedures Handbook, 4th ed.; Leber, A.L. (Ed.) ASM Press: Washington, DC, USA, 2016; ISBN 978-1-55581-880-7. [Google Scholar]
- Wexler, H.M. Bacteroides: The good, the bad and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, R.A. Microaerophilic bacteria transduce energy via oxidative metabolic gearing. Res. Microbiol. 2004, 155, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.L.; Schmidt, T.M. Shallow breathing: Bacterial life at low O2. Nat. Rev. Microbiol. 2013, 11, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Kaistha, N.; Gupta, V.; Chander, J. Isolation, Identification and Antimicrobial Susceptibility of Anaerobic Bacteria: A Study Re-emphasizing Its Role. J. Clin. Diagn. Res. 2014, 8, DL01–DL02. [Google Scholar] [CrossRef] [PubMed]
- Strobel, H.J. Basic laboratory culture methods for anaerobic bacteria. Methods Mol. Biol. 2009, 581, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Citron, D.M. Specimen collection and transport, anaerobic culture techniques and identification of anaerobes. Rev. Infect. Dis. 1984, 6 (Suppl. S1), S51–S58. [Google Scholar] [CrossRef] [PubMed]
- Barreau, M.; Pagnier, I.; La Scola, B. Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. Anaerobe 2013, 22, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Zimbro, M.J.; Power, D.A.; Miller, S.M.; Wilson, G.E.; Johnson, J.A. Manual of Microbiological Culture Media, 2nd ed.; BD Diagnostics—Diagnostic Systems: Sparks, MD, USA, 2009; ISBN 978-0-9727207-1-7. [Google Scholar]
- Schreckenberger, P.C.; Blazevic, D.J. Rapid methods for biochemical testing of anaerobic bacteria. Appl. Microbiol. 1974, 28, 759–762. [Google Scholar] [PubMed]
- Sondag, J.E.; Ali, M.; Murray, P.R. Rapid presumptive identification of anaerobes in blood cultures by gas-liquid chromatography. J. Clin. Microbiol. 1980, 11, 274–277. [Google Scholar] [PubMed]
- Wust, J.; Smid, I.; Salfinger, M. Experience of gas-liquid chromatography in clinical microbiology. Ann. Biol. Clin. Paris 1990, 48, 416–419. [Google Scholar] [PubMed]
- Lehtonen, L.; Korvenranta, H.; Eerola, E. Intestinal microflora in colicky and noncolicky infants: Bacterial cultures and gas-liquid chromatography. J. Pediatr. Gastroenterol. Nutr. 1994, 19, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Becker, S.; Kostrzewa, M.; Barta, N.; Urban, E. The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J. Med. Microbiol. 2012, 61, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Maier, T.; Urban, E.; Terhes, G.; Kostrzewa, M.; ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 2009, 15, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E. MALDI-TOF Mass Spectrometry in Microbiology; Kostrzewa, M., Schubert, S., Eds.; Caister Academic Press: Norfolk, UK, 2016; ISBN 978-1-910190-41-8. [Google Scholar]
- Krishnamurthy, T.; Ross, P.L.; Rajamani, U. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 883–888. [Google Scholar] [CrossRef]
- Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Vaneechoutte, M.; Huang, A.H.; Teng, L.J.; Chen, H.M.; Su, S.L.; Chang, T.C. Identification of clinically important anaerobic bacteria by an oligonucleotide array. J. Clin. Microbiol. 2010, 48, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Jamal, W.Y.; Shahin, M.; Rotimi, V.O. Comparison of two matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry methods and API 20AN for identification of clinically relevant anaerobic bacteria. J. Med. Microbiol. 2013, 62, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Veloo, A.C.; Erhard, M.; Welker, M.; Welling, G.W.; Degener, J.E. Identification of Gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst. Appl. Microbiol. 2011, 34, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Veloo, A.C.M.; de Vries, E.D.; Jean-Pierre, H.; Justesen, U.S.; Morris, T.; Urban, E.; Wybo, I.; van Winkelhoff, A.J.; ENRIA Workgroup. The optimization and validation of the Biotyper MALDI-TOF MS database for the identification of Gram-positive anaerobic cocci. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2016, 22, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Veloo, A.C.M.; Jean-Pierre, H.; Justesen, U.S.; Morris, T.; Urban, E.; Wybo, I.; Shah, H.N.; Friedrich, A.W.; ENRIA Workgroup; Morris, T.; et al. A multi-center ring trial for the identification of anaerobic bacteria using MALDI-TOF MS. Anaerobe 2017, 48, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Levesque, S.; Dufresne, P.J.; Soualhine, H.; Domingo, M.C.; Bekal, S.; Lefebvre, B.; Tremblay, C. A Side by Side Comparison of Bruker Biotyper and VITEK MS: Utility of MALDI-TOF MS Technology for Microorganism Identification in a Public Health Reference Laboratory. PLoS ONE 2015, 10, e0144878. [Google Scholar] [CrossRef] [PubMed]
- Veloo, A.C.; Knoester, M.; Degener, J.E.; Kuijper, E.J. Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria. Clin. Microbiol. Infect. 2011, 17, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Hasman, H.; Saputra, D.; Sicheritz-Ponten, T.; Lund, O.; Svendsen, C.A.; Frimodt-Moller, N.; Aarestrup, F.M. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J. Clin. Microbiol. 2014, 52, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, S.A.; Deveson, I.W.; Mercer, T.R. Reference standards for next-generation sequencing. Nat. Rev. Genet. 2017, 18, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Ank, N.; Sydenham, T.V.; Iversen, L.H.; Justesen, U.S.; Wang, M. Characterisation of a multidrug-resistant Bacteroides fragilis isolate recovered from blood of a patient in Denmark using whole-genome sequencing. Int. J. Antimicrob. Agents 2015, 46, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Veloo, A.C.M.; de Vries, E.D.; Jean-Pierre, H.; van Winkelhoff, A.J. Anaerococcus nagyae sp. nov., isolated from human clinical specimens. Anaerobe 2016, 38, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Haas, K.N.; Blanchard, J.L. Kineothrix alysoides, gen. nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae. Int. J. Syst. Evol. Microbiol. 2017, 67, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Soki, J.; Hedberg, M.; Patrick, S.; Balint, B.; Herczeg, R.; Nagy, I.; Hecht, D.W.; Nagy, E.; Urban, E. Emergence and evolution of an international cluster of MDR Bacteroides fragilis isolates. J. Antimicrob. Chemother. 2016, 71, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Salipante, S.J.; Kalapila, A.; Pottinger, P.S.; Hoogestraat, D.R.; Cummings, L.; Duchin, J.S.; Sengupta, D.J.; Pergam, S.A.; Cookson, B.T.; Butler-Wu, S.M. Characterization of a multidrug-resistant, novel Bacteroides genomospecies. Emerg. Infect. Dis. 2015, 21, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Rokosz, A.; Meisel-Mikolajczyk, F.; Kot, K.; Zawidzka, E.; Malchar, C.; Nowaczyk, M.; Gorski, A. Toxins of Bacteroides fragilis and Bacteroides thetaiotaomicron rods as stimulators of adhesion molecule expression on the surface of vascular endothelial cells. Med. Dosw. Mikrobiol. 1999, 51, 133–142. [Google Scholar] [PubMed]
- Sears, C.L. The toxins of Bacteroides fragilis. Toxicon 2001, 39, 1737–1746. [Google Scholar] [CrossRef]
- Kasper, D.L. The polysaccharide capsule of Bacteroides fragilis subspecies fragilis: Immunochemical and morphologic definition. J. Infect. Dis. 1976, 133, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Yu, V.L.; Morris, A.J.; McDermott, L.; Wagener, M.W.; Harrell, L.; Snydman, D.R. Antimicrobial resistance and clinical outcome of Bacteroides bacteremia: Findings of a multicenter prospective observational trial. Clin. Infect. Dis. 2000, 30, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Merchan, C.; Parajuli, S.; Siegfried, J.; Scipione, M.R.; Dubrovskaya, Y.; Rahimian, J. Multidrug-Resistant Bacteroides fragilis Bacteremia in a US Resident: An Emerging Challenge. Case Rep. Infect. Dis. 2016, 2016, 3607125. [Google Scholar] [CrossRef] [PubMed]
- Dunn, D.L.; Barke, R.A.; Ewald, D.C.; Simmons, R.L. Effects of Escherichia coli and Bacteroides fragilis on peritoneal host defenses. Infect. Immun. 1985, 48, 287–291. [Google Scholar] [PubMed]
- Breitenstein, A.; Wiegel, J.; Haertig, C.; Weiss, N.; Andreesen, J.A.; Lechner, U. Reclassification of Clostridium hydroybenzoicum as Sedimentibacter hydroxibenzoicus gen. nov., comb. nov. and description of Sedimentibacter saalensis sp. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.D.; Pacheco, D.M.; Kelly, W.J.; Leahy, S.C.; Li, D.; Kopecny, J.; Attwod, G.T. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int. J. Syst. Evol. Microbiol. 2008, 58, 2041–2045. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.O.; Lobato, F.C. Clostridium perfringens: A review of enteric diseases in dogs, cats and wild animals. Anaerobe 2015, 33, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Hill, K.K.; Raphael, B.H. Historical and cultural perspectives on Clostridium botulinum diversity. Res. Microbiol. 2015, 166, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Hecht, D.W. Prevalence of antibiotic resistance in anaerobic bacteria: Worrisome developments. Clin. Infect. Dis. 2004, 39, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.J.C.; Citron, D.M.; Goldman, P.J.; Goldman, R.J. National hospital survey of anaerobic culture and susceptibility methods: III. Anaerobe 2008, 14, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Brook, I. Antimicrobial treatment of anaerobic infections. Expert Opin. Pharmacother. 2011, 12, 1691–1707. [Google Scholar] [CrossRef] [PubMed]
- Tuner, K.; Nord, C.E. Antibiotic susceptibility of anaerobic bacteria in Europe. Clin. Infect. Dis. 1993, 16 (Suppl. S4), S387–S389. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Available online: https://clsi.org/standards/products/microbiology/ (accessed on 10 September 2017).
- European Committe for Antimicrobial Susceptibility Testing (EUCAST). Available online: http://eucast.org/ (accessed on 10 September 2017).
- Brown, D.F.; Wootton, M.; Howe, R.A. Antimicrobial susceptibility testing breakpoints and methods from BSAC to EUCAST. J. Antimicrob. Chemother. 2016, 71, 3–5. [Google Scholar] [CrossRef] [PubMed]
- British Society for Antimicrobial Chemotherapy (BSAC). Available online: http://www.bsac.org.uk/ (accessed on 10 September 2017).
- Deutsches Institut für Normung (DIN). Available online: https://www.din.de/en (accessed on 10 September 2017).
- ESCMID Study Group for Anaerobic Infections—ESGAI. Available online: https://www.escmid.org/research_projects/study_groups/anaerobic_infections/ (accessed on 10 September 2017).
- Anaerobe Society of the Americas. Available online: http://www.anaerobe.org/ (accessed on 10 September 2017).
- Clinical and Laboratory Standards Institute. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard; CLSI Document M11-A8; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Justesen, T.; Justesen, U.S. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria. Diagn. Microbiol. Infect. Dis. 2013, 76, 138–140. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, version 7.1; European Committee for Antimicrobial Susceptibility Testing (EUCAST): Växjö, Sweden, 2017. [Google Scholar]
- Matuschek, E.; Brown, D.F.; Kahlmeter, G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef] [PubMed]
- Wikins, T.D.; Holdeman, L.V.; Abramson, I.J.; Moore, W.E. Standardized single-disc method for antibiotic susceptibility testing of anaerobic bacteria. Antimicrob. Agents Chemother. 1972, 1, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Justesen, U.S.; Eitel, Z.; Urban, E.; ESCMID Study Group on Anaerobic Infection. Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroides fragilis group isolates. Anaerobe 2015, 31, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Egervarn, M.; Lindmark, H.; Roos, S.; Huys, G.; Lindgren, S. Effects of inoculum size and incubation time on broth microdilution susceptibility testing of lactic acid bacteria. Antimicrob. Agents Chemother. 2007, 51, 394–396. [Google Scholar] [CrossRef] [PubMed]
- El-Halfawy, O.M.; Valvano, M.A. Antimicrobial heteroresistance: An emerging field in need of clarity. Clin. Microbiol. Rev. 2015, 28, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Weintraub, A.; Fang, H.; Wu, S.; Zhang, Y.; Nord, C.E. Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe 2010, 16, 633–635. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.B.; Schalkowsky, S. Development and evaluation of the spiral gradient endpoint method for susceptibility testing of anaerobic gram-negative bacilli. Rev. Infect. Dis. 1990, 12 (Suppl. S2), S200–S209. [Google Scholar] [CrossRef] [PubMed]
- Pong, R.; Boost, M.V.; O’Donoghue, M.M.; Appelbaum, P.C. Spiral gradient endpoint susceptibility testing: A fresh look at a neglected technique. J. Antimicrob. Chemother. 2010, 65, 1959–1963. [Google Scholar] [CrossRef] [PubMed]
- Wexler, H.M.; Molitoris, E.; Murray, P.R.; Washington, J.; Zabransky, R.J.; Edelstein, P.H.; Finegold, S.M. Comparison of spiral gradient endpoint and agar dilution methods for susceptibility testing of anaerobic bacteria: A multilaboratory collaborative evaluation. J. Clin. Microbiol. 1996, 34, 170–174. [Google Scholar] [PubMed]
- Papanicolas, L.E.; Bell, J.M.; Bastian, I. Performance of phenotypic tests for detection of penicillinase in Staphylococcus aureus isolates from Australia. J. Clin. Microbiol. 2014, 52, 1136–1138. [Google Scholar] [CrossRef] [PubMed]
- Pitkala, A.; Salmikivi, L.; Bredbacka, P.; Myllyniemi, A.L.; Koskinen, M.T. Comparison of tests for detection of beta-lactamase-producing staphylococci. J. Clin. Microbiol. 2007, 45, 2031–2033. [Google Scholar] [CrossRef] [PubMed]
- Tierney, D.; Copsey, S.D.; Morris, T.; Perry, J.D. A new chromogenic medium for isolation of Bacteroides fragilis suitable for screening for strains with antimicrobial resistance. Anaerobe 2016, 39, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Pumbwe, L.; Curzon, M.; Wexler, H.M. Rapid multiplex PCR assay for simultaneous detection of major antibiotic resistance determinants in clinical isolates of Bacteroides fragilis. J. Rapid Methods Autom. Microbiol. 2008, 16, 381–393. [Google Scholar] [CrossRef]
- Johansson, A.; Nagy, E.; Soki, J. Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization—Time of flight mass spectrometry. J. Med. Microbiol. 2014, 63, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.; Nagy, E.; Soki, J. Esgai Detection of carbapenemase activities of Bacteroides fragilis strains with matrix-assisted laser desorption ionization--time of flight mass spectrometry (MALDI-TOF MS). Anaerobe 2014, 26, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Becker, S.; Soki, J.; Urban, E.; Kostrzewa, M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Med. Microbiol. 2011, 60, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Sparbler, K.; Schubert, S.; Weller, U.; Boogen, C.; Kostrzewa, M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional analysis for rapid detection of resistance against beta-lactam antibtiotics. J. Clin. Microbiol. 2011, 927–937. [Google Scholar] [CrossRef]
- Hrabák, J.; Chudáčková, E.; Walková, R. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: From research to routine diagnosis. Clin. Microbiol. Rev. 2013, 26, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Hrabák, J.; Walková, R.; Študentová, V.; Chudáčková, E.; Bergerová, T. Carbapenemase activity detection by Matrix-Assisted LaserDesorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2011, 49, 3222–3227. [Google Scholar] [CrossRef] [PubMed]
- Salipante, S.J.; SenGupta, J.D.; Cummings, L.A.; Land, T.A.; Hoogerstraat, D.R.; Cookson, B.T. Application of Whole-Genome Sequencing for Bacterial Strain Typing in Molecular Epidemiology. J. Clin. Microbiol. 2015, 53, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, B.J.; Chochua, S.; Gertz, R.E., Jr.; Li, Z.; Walker, H.; Tran, T.; Hawkins, P.A.; Glennen, A.; Lynfield, R.; Li, Y.; et al. Using whole genome sequencing to identify determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin. Microbiol. Infect. 2016, 22, 1002.e1–1002.e8. [Google Scholar] [CrossRef] [PubMed]
- McDermott, P.F.; Tyson, G.H.; Claudine, K.; Chen, Y.; Li, C.; Folster, J.P.; Ayers, S.L.; Lam, C.; Tate, H.P.; Zhao, S. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella Antimicrob. Agents Chemother. 2016, 60, 5515–5520. [Google Scholar] [CrossRef] [PubMed]
- Köser, C.U.; Ellington, M.J.; Peacock, S.J. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014, 30, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Ellington, M.J.; Ekelund, O.; Aarestrup, F.M.; Canton, R.; Doumith, M.; Giske, C.; Grundman, H.; Hasman, H.; Holden, M.T.; Hopkins, K.L.; et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 2017, 23, 2–22. [Google Scholar] [CrossRef] [PubMed]
- Sydenham, T.V.; Soki, J.; Hasman, H.; Wang, M.; Justesen, U.S. Esgai Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing. Anaerobe 2015, 31, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, J.R.; Noyes, N.; Young, A.E.; Prince, D.J.; Blanchard, P.C.; Lehenbauer, T.W.; Aly, S.S.; Davis, J.H.; O’Rourke, S.M.; Abdo, Z.; et al. Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease. G3 Bethesda 2017, 7, 3059–3071. [Google Scholar] [CrossRef] [PubMed]
- Hecker, M.T.; Aron, D.C.; Patel, N.P.; Lehmann, M.K.; Donskey, C.J. Unnecessary use of antimicrobials in hospitalized patients: Current patterns of misuse with an emphasis on the antianaerobic spectrum of activity. Arch. Intern. Med. 2003, 163, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Eslami, G.; Fallah, F.; Goudarzi, H.; Navidinia, M. The prevalence of antibiotic resistance in anaerobic bacteria isolated from patients with skin infections. Gene Ther. Mol. Biol. 2005, 9, 263–268. [Google Scholar]
- Hecht, D.W.; Vedantam, G.; Osmolski, J.R. Antibiotic resistance among anaerobes: What does it mean? Anaerobe 1999, 5, 421–429. [Google Scholar] [CrossRef]
- Bach, V.T.; Thadepalli, H. Susceptibility of anaerobic bacteria in vitro to 23 antimicrobial agents. Chemotherapy 1980, 26, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Urban, E.; Nord, C.E.; ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin. Microbiol. Infect. 2011, 17, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Eitel, Z.; Sóki, J.; Urbán, E.; Nagy, E. The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe 2013, 21, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, L.; Kolarov, R.; Mitov, I. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe 2015, 31, 4–10. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017; pp. 1–7. [Google Scholar]
- Cornick, N.A.; Cuchural, G.J., Jr.; Snydman, D.R.; Jacobus, N.V.; Iannini, P.; Hill, G.; Cleary, T.; O’Keefe, J.P.; Pierson, C.; Finegold, S.M. The antimicrobial susceptibility patterns of the Bacteroides fragilis group in the United States, 1987. J. Antimicrob. Chemother. 1990, 25, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; Jacobus, N.V.; McDermott, L.A.; Golan, Y.; Goldstein, E.J.; Harrell, L.; Jenkins, S.; Newton, D.; Pierson, C.; Rosenblatt, J.; et al. Update on resistance of Bacteroides fragilis group and related species with special attention to carbapenems 2006–2009. Anaerobe 2011, 17, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; Jacobus, N.V.; McDermott, L.A.; Ruthazer, R.; Golan, Y.; Goldstein, E.J.; Finegold, S.M.; Harrell, L.J.; Hecht, D.W.; Jenkins, S.G.; et al. National survey on the susceptibility of Bacteroides fragilis group: Report and analysis of trends in the United States from 1997 to 2004. Antimicrob. Agents Chemother. 2007, 51, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; Jacobus, N.V.; McDermott, L.A.; Goldstein, E.J.; Harrell, L.; Jenkins, S.G.; Newton, D.; Patel, R.; Hecht, D.W. Trends in antimicrobial resistance among Bacteroides species and Parabacteroides species in the United States from 2010–2012 with comparison to 2008–2009. Anaerobe 2017, 43, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; McDermott, L.; Cuchural, G.J., Jr.; Hecht, D.W.; Iannini, P.B.; Harrell, L.J.; Jenkins, S.G.; O’Keefe, J.P.; Pierson, C.L.; Rihs, J.D.; et al. Analysis of trends in antimicrobial resistance patterns among clinical isolates of Bacteroides fragilis group species from 1990 to 1994. Clin. Infect. Dis. 1996, 23 (Suppl. S1), S54–S65. [Google Scholar] [CrossRef] [PubMed]
- Betriu, C.; Culebras, E.; Gomez, M.; Lopez, F.; Rodriguez-Avial, I.; Picazo, J.J. Resistance trends of the Bacteroides fragilis group over a 10-year period, 1997 to 2006, in Madrid, Spain. Antimicrob. Agents Chemother. 2008, 52, 2686–2690. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, M.; Nord, C.E.; SCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe. Clin. Microbiol. Infect. 2003, 9, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Jeverica, S.; Kolenc, U.; Mueller-Premru, M.; Papst, L. Evaluation of the routine antimicrobial susceptibility testing results of clinically significant anaerobic bacteria in a Slovenian tertiary-care hospital in 2015. Anaerobe 2017, 47, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, I.; Aoki, K.; Miura, Y.; Yamaguchi, T.; Matsumoto, T. Fatal sepsis caused by multidrug-resistant Bacteroides fragilis, harboring a cfiA gene and an upstream insertion sequence element, in Japan. Anaerobe 2017, 44, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Urban, E.; Horvath, Z.; Soki, J.; Lazar, G. First Hungarian case of an infection caused by multidrug-resistant Bacteroides fragilis strain. Anaerobe 2015, 31, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Sadarangani, S.P.; Cunningham, S.A.; Jeraldo, P.R.; Wilson, J.W.; Khare, R.; Patel, R. Metronidazole- and carbapenem-resistant Bacteroides thetaiotaomicron isolated in Rochester, Minnesota, in 2014. Antimicrob. Agents Chemother. 2015, 59, 4157–4161. [Google Scholar] [CrossRef] [PubMed]
- Soki, J.; Eitel, Z.; Urban, E.; Nagy, E.; ESCMID Study Group on Anaerobic Infections. Molecular analysis of the carbapenem and metronidazole resistance mechanisms of Bacteroides strains reported in a Europe-wide antibiotic resistance survey. Int. J. Antimicrob. Agents 2013, 41, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Soki, J.; Fodor, E.; Hecht, D.W.; Edwards, R.; Rotimi, V.O.; Kerekes, I.; Urban, E.; Nagy, E. Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwait. J. Med. Microbiol. 2004, 53, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Nord, C.E. Antimicrobial Resistance Among Anaerobes—The European Experience. Int. J. Infect. Dis. 2008, 12, E39. [Google Scholar] [CrossRef]
- Wareham, D.W.; Wilks, M.; Ahmed, D.; Brazier, J.S.; Millar, M. Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: Microbiological cure and clinical response with linezolid therapy. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2005, 40, e67–e68. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Park, S.-Y.; Song, D.J.; Huh, H.J.; Ki, C.-S.; Peck, K.R.; Lee, N.Y. A case of Bacteroides pyogenes bacteremia secondary to liver abscess. Anaerobe 2016, 42, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.Y.; Ng, L.S.Y.; Kwang, L.L.; Rao, S.; Eng, L.C. Clinical characteristics and antimicrobial susceptibilities of anaerobic bacteremia in an acute care hospital. Anaerobe 2017, 43, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wexler, H.M. Outer-membrane pore-forming proteins in gram-negative anaerobic bacteria. Clin. Infect. Dis. 2002, 35, S65–S71. [Google Scholar] [CrossRef] [PubMed]
- Then, R.L.; Angehrn, P. Low trimethoprim susceptibility of anaerobic bacteria due to insensitive dihydrofolate reductases. Antimicrob. Agents Chemother. 1979, 15, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bryan, L.E.; Kowand, S.K.; Van Den Elzen, H.M. Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob. Agents Chemother. 1979, 15, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Jimenezdiaz, A.; Reig, M.; Baquero, F.; Ballesta, J.P.G. Antibiotic-Sensitivity of Ribosomes from Wild-Type and Clindamycin Resistant Bacteroides vulgatus Strains. J. Antimicrob. Chemother. 1992, 30, 295–301. [Google Scholar] [CrossRef]
- Nikolich, M.P.; Shoemaker, N.B.; Salyers, A.A. A Bacteroides Tetracycline Resistance Gene Represents a New Class of Ribosome Protection Tetracycline Resistance. Antimicrob. Agents Chemother. 1992, 36, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Vlamakis, H.; Shoemaker, N.; Salyers, A.A. A new Bacteroides conjugative transposon that carries an ermB gene. Appl. Environ. Microbiol. 2003, 69, 6455–6463. [Google Scholar] [CrossRef] [PubMed]
- Farrow, K.A.; Lyras, D.; Rood, J.I. Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology-Sgm 2001, 147, 2717–2728. [Google Scholar] [CrossRef] [PubMed]
- Farrow, K.A.; Lyras, D.; Polekhina, G.; Koutsis, K.; Parker, M.W.; Rood, J.I. Identification of essential residues in the Erm(B) rRNA methyltransferase of Clostridium perfringens. Antimicrob. Agents Chemother. 2002, 46, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Thadepalli, H.; Gorbach, S.L.; Bartlett, J.G. Apparent Failure of Chloramphenicol in Treatment of Anaerobic Infections. Curr. Ther. Res. Clin. Exp. 1977, 22, 421–426. [Google Scholar]
- Balbi, H.J. Chloramphenicol: A review. Pediatr. Rev. 2004, 25, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Golan, Y.; McDermott, L.A.; Jacobus, N.V.; Goldstein, E.J.C.; Finegold, S.; Harrell, L.J.; Hecht, D.W.; Jenkins, S.G.; Pierson, C.; Venezia, R.; et al. Emergence of fluoroquinolone resistance among Bacteroides species. J. Antimicrob. Chemother. 2003, 52, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.E.; Goldstein, E.J.C. Fluoroquinolones and anaerobes. Clin. Infect. Dis. 2006, 42, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; El Amin, N.; Davies, T.; Appelbaum, P.C.; Edlund, C. gyrA Mutations associated with quinolone resistance in Bacteroides fragilis group strains. Antimicrob. Agents Chemother. 2001, 45, 1977–1981. [Google Scholar] [CrossRef] [PubMed]
- Dridi, L.; Tankovic, J.; Burghoffer, B.; Barbut, F.; Petit, J.C. gyrA and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob. Agents Chemother. 2002, 46, 3418–3421. [Google Scholar] [CrossRef] [PubMed]
- Brazier, J.S.; Hall, V.; Morris, T.E.; Gal, M.; Duerden, B.I. Antibiotic susceptibilities of Gram-positive anaerobic cocci: Results of a sentinel study in England and Wales. J. Antimicrob. Chemother. 2003, 52, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Podglajen, I.; Breuil, J.; Collatz, E. Insertion of a Novel DNA-Sequence, Is-1186, Upstream of the Silent Carbapenemase Gene Cfia, Promotes Expression of Carbapenem Resistance in Clinical Isolates of Bacteroides fragilis. Mol. Microbiol. 1994, 12, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Podglajen, I.; Breuil, J.; Bordon, F.; Gutmann, L.; Collatz, E. A Silent Carbapenemase Gene in Strains of Bacteroides fragilis Can Be Expressed after a One-Step Mutation. Fems Microbiol. Lett. 1992, 91, 21–29. [Google Scholar] [CrossRef]
- Appelbaum, P.C.; Spangler, S.K.; Pankuch, G.A.; Philippon, A.; Jacobs, M.R.; Shiman, R.; Goldstein, E.J.C.; Citron, D.M. Characterization of a Beta-Lactamase from Clostridium clostridioforme. J. Antimicrob. Chemother. 1994, 33, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, P.C.; Philippon, A.; Jacobs, M.R.; Spangler, S.K.; Gutmann, L. Characterization of Beta-Lactamases from Non-Bacteroides fragilis Group Bacteroides Spp Belonging to 7 Species and Their Role in Beta-Lactam Resistance. Antimicrob. Agents Chemother. 1990, 34, 2169–2176. [Google Scholar] [CrossRef] [PubMed]
- Cuchural, G.J.; Malamy, M.H.; Tally, F.P. Beta-Lactamase-Mediated Imipenem Resistance in Bacteroides fragilis. Antimicrob. Agents Chemother. 1986, 30, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Hurlbut, S.; Cuchural, G.J.; Tally, F.P. Imipenem Resistance in Bacteroides distasonis Mediated by a Novel Beta-Lactamase. Antimicrob. Agents Chemother. 1990, 34, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.A.; Gluzman, Y.; Tally, F.P. Cloning and Sequencing of the Class-B Beta-Lactamase Gene (Ccra) from Bacteroides fragilis Tal3636. Antimicrob. Agents Chemother. 1990, 34, 1590–1592. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.B.; Parker, A.C.; Smith, C.J. Cloning and Characterization of the Endogenous Cephalosporinase Gene, Cepa, from Bacteroides fragilis Reveals a New Subgroup of Ambler Class-a Beta-Lactamases. Antimicrob. Agents Chemother. 1993, 37, 2391–2400. [Google Scholar] [CrossRef] [PubMed]
- Wexler, H.M.; Halebian, S. Alterations to the Penicillin-Binding Proteins in the Bacteroides fragilis Group—A Mechanism for Non-Beta-Lactamase Mediated Cefoxitin Resistance. J. Antimicrob. Chemother. 1990, 26, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.; Read, P.N. Expression of the carbapenemase gene (cfiA) in Bacteroides fragilis. J. Antimicrob. Chemother. 2000, 46, 1009–1012. [Google Scholar] [CrossRef] [PubMed]
- Gutacker, M.; Valsangiacomo, C.; Piffaretti, J.C. Identification of two genetic groups in Bacteroides fragilis by multilocus enzyme electrophoresis: Distribution of antibiotic resistance (cfiA, cepA) and enterotoxin (bft) encoding genes. Microbiology 2000, 146, 1241–1254. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhya, I.; Hansen, R.; Nicholl, C.E.; Alhaidan, Y.A.; Thomson, J.M.; Berry, S.H.; Pattinson, C.; Stead, D.A.; Russell, R.K.; El-Omar, E.M.; et al. A Comprehensive Evaluation of Colonic Mucosal Isolates of Sutterella wadsworthensis from Inflammatory Bowel Disease. PLoS ONE 2011, 6, e27076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wexler, H.M.; Reeves, D.; Summanen, P.H.; Molitoris, E.; McTeague, M.; Duncan, J.; Wilson, K.H.; Finegold, S.M. Sutterella wadsworthensis gen. nov., sp. nov., bile-resistant microaerophilic Campylobacter gracilis-like clinical isolates. Int. J. Syst. Bacteriol. 1996, 46, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Brazier, J.S.; Stubbs, S.L.J.; Duerden, B.I. Metronidazole resistance among clinical isolates belonging to the Bacteroides fragilis group: Time to be concerned? J. Antimicrob. Chemother. 1999, 44, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Löfmark, S.; Edlund, C.; Nord, C.E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2010, 50 (Suppl. S1), S16–S23. [Google Scholar] [CrossRef] [PubMed]
- Presečki Stanko, A.; Sóki, J.; Varda Brkić, D.; Plečko, V. Lactate dehydrogenase activity in Bacteroides fragilis group strains with induced resistance to metronidazole. J. Glob. Antimicrob. Resist. 2016, 5, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Soki, J.; Gal, M.; Brazier, J.S.; Rotimi, V.O.; Urban, E.; Nagy, E.; Duerden, B.I. Molecular investigation of genetic elements contributing to metronidazole resistance in Bacteroides strains. J. Antimicrob. Chemother. 2006, 57, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Laurent, E.; Rodriguez, C.; Rodriguez-Cavallini, E.; Gamboa-Coronado, M.D.; Quesada-Gomez, C. Resistance of Bacteroides isolates recovered among clinical samples from a major Costa Rican hospital between 2000 and 2008 to beta-lactams, clindamycin, metronidazole and chloramphenicol. Rev. Esp. Quimioter. 2012, 25, 261–265. [Google Scholar] [PubMed]
- Shilnikova, I.I.; Dmitrieva, N.V. Evaluation of Antibiotic Susceptibility of Gram-Positive Anaerobic Cocci Isolated from Cancer Patients of the N.N. Blokhin Russian Cancer Research Center. J. Pathog. 2015. [Google Scholar] [CrossRef]
- Carlier, J.P.; Sellier, N.; Rager, M.N.; Reysset, G. Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of Bacteroides fragilis. Antimicrob. Agents Chemother. 1997, 41, 1495–1499. [Google Scholar] [PubMed]
- Trinh, S.; Haggoud, A.; Reysset, G.; Sebald, M. Plasmids Pip419 and Pip421 from Bacteroides—5-Nitroimidazole Resistance Genes and Their Upstream Insertion-Sequence Elements. Microbiology 1995, 141, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Theron, M.M.; van Rensburg, M.N.J.; Chalkley, L.J. Nitroimidazole resistance genes (nimB) in anaerobic Gram-positive cocci (previously Peptostreptococcus spp.). J. Antimicrob. Chemother. 2004, 54, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Urban, E.; Soki, J.; Brazier, J.S.; Nagy, E.; Duerden, B.I. Prevalence and characterization of nim genes of Bacteroides spp. isolated in Hungary. Anaerobe 2002, 8, 175–179. [Google Scholar] [CrossRef]
- Roberts, M.C. Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes. Anaerobe 2003, 9, 63–69. [Google Scholar] [CrossRef]
- Bartha, N.A.; Soki, J.; Edit, U.; Nagy, E. Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. Int. J. Antimicrob. Agents 2011, 38, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Speer, B.S.; Shoemaker, N.B.; Salyers, A.A. Bacterial resistance to tetracycline: Mechanisms, transfer and clinical significance. Clin. Microbiol. Rev. 1992, 5, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Spengler, G.; Kincses, A.; Gajdacs, M.; Amaral, L. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules 2017, 22. [Google Scholar] [CrossRef] [PubMed]
- Pumbwe, L.; Chang, A.; Smith, R.L.; Wexler, H.M. BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb. Drug Resist. 2007, 13, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yan, A. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria. Antibiotics (Basel) 2015, 4, 379–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafii, F.; Park, M. Detection and characterization of an ABC transporter in Clostridium hathewayi. Arch. Microbiol. 2008, 190, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Tegos, G.P.; Haynes, M.; Jacob Strouse, J.; Khan, M.T.; Bologa, C.G.; Oprea, T.I.; Sklar, L.A. Microbial Efflux Pump Inhibition: Tactics and Strategies. Curr. Pharm. Des. 2011, 17, 1291–1302. [Google Scholar] [CrossRef] [PubMed]
- Fille, M.; Mango, M.; Lechner, M.; Schaumann, R. Bacteroides fragilis group: Trends in resistance. Curr. Microbiol. 2006, 52, 153–157. [Google Scholar] [CrossRef] [PubMed]
Gram-Positives | Gram-Negatives | ||
---|---|---|---|
Cocci | Rods | Cocci | Rods |
Anaerococcus | Actinomyces | Acidaminococcus | Bacteroides |
Atopobium | Bifidobacterium | Megasphera | Bilophila |
Coprococcus | Clostridium | Veillonella | Butyrivibrio |
Finegoldia | Eubacterium | Centipeda | |
Gaffkya | Lactobacillus | Desulfonomonas | |
Gallicola | Propionibacterium | Fusobacterium | |
Parvimonas | Leptotrichia | ||
Murdochiella | Mitsuokella | ||
Peptococcus | Mobiluncus | ||
Peptostreptococcus | Porphyromonas | ||
Peptoniphilus | Prevotella | ||
Ruminococcus | Selenomonas | ||
Sarcina | Succinimonas | ||
Succinivibrio | |||
Sutterella | |||
Wolinella |
Bacteroides | Parabacteroides | |||
---|---|---|---|---|
B. acidifaciens | B. eggerthii | B. massiliensis | B. sartorii | P. chartae |
B. barnesiae | B. faecis | B. nordiia | B. stercoris | P. distasonis |
B. caccae | B. finegoldii | B. oleiciplenus | B. thetaiotaomicron | P. goldsteinii |
B. cellulosilyticus | B. fluxus | B. ovatus | B. uniformis | P. gordonii |
B. chinchillae | B. galacturonicus | B. plebeius | B. vulgatus | P. johnsonii |
B. clarus | B. gallinarium | B. propionifaciens | B. xylanisolvens | P. merdae |
B. coagulans | B. graminisolvens | B. pyogenes | B.xylanolyticus | |
B. coprocola | B. helcogenes | B. rodentium | B. zoogleoformans | |
B. coprophilus | B. heparinolyticus | B. salanitronis | ||
B. dorei | B. intestinalis | B. salyersiae |
Pathogen | Disease |
---|---|
C. argentinense C. baratii C. botulinum C. butyricum | Botulism |
C. bifermentans C. fallax C. histolyticum C. novyi C. perfringens C. sordelii | Soft tissue infections (gas gangrene, suppurative myonecrosis, cellulitis) Food poisoning Enteritis necrotisans Endometritis Sepsis |
C. tetani | Tetanus |
C. difficile | Antibiotic-associated diarrhoea Pseudomembranous colitis Toxic megacolon |
C. clostridioforme C. innocuum C. sporogenes C. tertium | Opportunistic infections |
Bacteroides fragilis group |
Bilophila wadsworthia |
Clostridium innocuum |
Clostridium perfringens |
Clostridium ramosum |
Fusobacterium spp. |
Prevotella spp. |
Sutterella wadsworthensis |
novel clinically important anaerobes (where surveillance data is not available) |
Obligatory a | Accessory b |
---|---|
5-nitroimidazole group drugs c | cefoxitin |
penicillins | moxifloxacin |
beta-lactam-beta-lactamase inhibitore combination d | tigecycline |
clindamycin | Vancomycin f |
Carbapenems e | Fidaxomycin f |
Europe | AMP | AMX/CLA | PIP/TAZ | FX | IMP | CLI | TET | MET | CIP | MXF |
---|---|---|---|---|---|---|---|---|---|---|
Breakpoints (mg/L) | 32/64 | 8 | 128 | 32/64 | 4/16 | 4/8 | 4 | 8/32 | 4 | 8 |
1990 | 16.0% | 1.0% | - | 3.0% | 0.3% | 9.0% | 64.0% | 0.0% | 56.0% | - |
2000 | 99.3% | - | 1.0% | 6.0% | 0.7% | 15.0% | - | 0.5% | - | 9.0% |
2010 | 98.2% | 10.4% | 10.3% | 17.2% | 1.2% | 32.4% | - | 0.5% | - | 13.6% |
USA | AMP | AMP/SUL | PIP/TAZ | FX | IMP | CLI | TET | MET | CIP | MXF |
---|---|---|---|---|---|---|---|---|---|---|
Breakpoints (mg/L) | - | 32 | 128 | 16/64 | 8/16 | 4/8 | - | 16 | - | 8 |
1990 | - | - | - | 11.0% | 0.0% | 5.0% | - | 0.0% | - | - |
1997/2004 | - | 2.6% | 0.5% | 10.3% | 0.4% | 25.6% | - | 0.0% | - | 34.5% |
2009 a | - | 6.5% | 0.8% | 10.9% | 0.6% | 35.2% | - | - | - | 50.1% |
Antibiotic Class | Mechanism of Resistance | Genes or Enzymes Implicated | Examples of Microorganisms |
---|---|---|---|
Aminoglycosides | Lack of O- or N-based electron transport systems; Unable to reach target ribosome subunit (30S) | All anaerobes | |
β-lactams | β-lactamase enzymes: | ||
Penicillinases | Clostridium spp. Fusobacterium spp., Prevotella spp., Porphyromonas spp. | ||
Cephalosporinases | cepA, cfxA | B. fragilis gp | |
Metallo-β-lactamases | cfiA, ccrA | B. fragilis gp. | |
Reduced affinity to target molecule | PBP1–2 alterations | Anaerobic Gram-positive cocci, B. fragilis gp. | |
PBP3 (aztrenonam) | All anaerobes | ||
Loss of porin channels | B. fragilis gp. | ||
Chloramphenicol | Inactivation | ||
Acetylation | cat | B. fragilis gp. | |
Nitro-reduction | B. fragilis gp. | ||
Clindamycin | Methylation of the 23S rRNA | ermF, ermG, ermS | B. fragilis gp. |
ermB, ermF, ermG, ermFG, | Prevotella spp. | ||
ermF | Porphyromonas spp. | ||
ermB, ermQ | Cl. difficile | ||
ermP, ermQ | Cl. perfringens | ||
Inactivation | B. fragilis gp. | ||
Macrolides | Methylation of the 23S rRNA | ermA, ermB, ermF, ermG, ermQ, ermTM | F. magna, P. tetradius, P. anaerobius |
Metronidazole | Intrinsic | Gram-positive anaerobic bacteria | |
Reduction of the drug by nitroimidazole reductase | nimA-H | B. fragilis gp., Veillonella spp. | |
nimI | Prevotella spp. | ||
Reduced uptake of the drug | B. fragilis gp. | ||
Increase in LDH activity | B. fragilis gp. | ||
Quinolones | Mutations in target enzymes | ||
DNA-gyrase (Topoisomerase II) | gyrA, gyrB | B. fragilis, Cl. perfringens, Cl. difficile | |
Topoisomerase IV | parC | Cl. difficile | |
Tetracyclines | Ribosomal protection | tet(Q) | B. fragilis gp. |
tet(M), tet(W) | Fusobacterium spp. | ||
tet(M), tet(Q), tet(W) | Prevotella spp. | ||
Ribosomal modification | tetA(P), tetB(P) | Clostridium spp. | |
Efflux pumps | tetA-E | B. fragilis gp. | |
tetK-L | Peptostreptococcus spp., Veillonella spp. | ||
Enzymatic degradation (oxidative) | tetX | B. fragilis gp. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdács, M.; Spengler, G.; Urbán, E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Antibiotics 2017, 6, 25. https://doi.org/10.3390/antibiotics6040025
Gajdács M, Spengler G, Urbán E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Antibiotics. 2017; 6(4):25. https://doi.org/10.3390/antibiotics6040025
Chicago/Turabian StyleGajdács, Márió, Gabriella Spengler, and Edit Urbán. 2017. "Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology?" Antibiotics 6, no. 4: 25. https://doi.org/10.3390/antibiotics6040025
APA StyleGajdács, M., Spengler, G., & Urbán, E. (2017). Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Antibiotics, 6(4), 25. https://doi.org/10.3390/antibiotics6040025