Analysis of Tetracyclines in Medicated Feed for Food Animal Production by HPLC-MS/MS
Abstract
:1. Introduction
2. Results
Retention Time (min) | Precursor > Product Ion | Cone Voltage (V) | Collision Energy | |
---|---|---|---|---|
Tetracycline | 11.71 | 445 > 410 | 30 | 29 |
445 > 154 | 30 | 27 | ||
445 > 226 | 30 | 27 | ||
Doxycycline | 13.41 | 445 > 428 | 30 | 20 |
445 > 201 | 30 | 27 | ||
445 > 153 | 30 | 20 | ||
Clortetracycline | 11.84 | 479 > 260 | 30 | 23 |
479 > 286 | 30 | 23 | ||
479 > 305 | 30 | 23 | ||
Oxytetracycline | 12.61 | 461 > 426 | 30 | 20 |
461 > 443 | 30 | 20 | ||
461 > 408 | 30 | 20 | ||
Democlociclina | 12.00 | 465 > 448 | 30 | 17 |
465 > 288 | 30 | 17 |
(mg/kg) | HPLC-MS/MS | HPLC-Fluorescent | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Recoveries | Repeatability | Reproducibility | Accuracy | Recoveries | Repeatability | Reproducibility | |
Clortetracycline | ||||||||
50 | 103 | 98 | 8 | 10 | 98 | 62 | 2.4 | 7.3 |
100 | 90 | 7 | 8 | |||||
150 | 94 | 7 | 8 | |||||
Oxitetracycline | ||||||||
50 | 93 | 95 | 9 | 14 | 101 | 60 | 3.7 | 3.9 |
100 | 102 | 8 | 8 | |||||
150 | 95 | 7 | 9 | |||||
Tetracycline | ||||||||
50 | 104 | 98 | 8 | 13 | 108 | 50 | 3.4 | 6.7 |
100 | 104 | 11 | 13 | |||||
150 | 109 | 4 | 7 | |||||
Doxycycline | ||||||||
50 | 87 | 92 | 15 | 16 | 108 | 58 | 1.9 | 6.9 |
100 | 94 | 11 | 12 | |||||
150 | 84 | 10 | 12 |
3. Discussion
3.1. HPLC-MS/MS Analysis
3.2. Comparison between HPLC-MS/MS and HPLC-Fluorescent Detection
3.3. Interlaboratory Studies
4. Material and Methods
4.1. Chemicals, Reagents and Stock Solutions
4.2. Analysis by HPLC-MS/MS
4.3. Sample Extraction for HPLC-MS/MS Analysis
4.4. Validation of the HPLC-MS/MS Method
4.5. HPLC-Fluorescent Detection
4.6. Interlaboratory Studies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Kools, S.A.; Boxall, A.; Moltmann, J.F.; Bryning, G.; Koschorreck, J.; Knacker, T. A ranking of European veterinary medicines based on environmental risks. Integr. Environ. Assess. Manag. 2008, 4, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Luiz, M.M.; Romero-Gonzalez, R.; Plaza-Bolanos, P.; Martinez Vidal, J.L.; Garrido Frenich, A. Wide-scope analysis of veterinary drug and pesticide residues in animal feed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 6543–6553. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Wadhwa, B.K.; Stan, H.J. Multi-residue analysis of pesticides in animal feed concentrate. Bull. Environ. Contam. Toxicol. 2005, 74, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Vinas, P.; Campillo, N.; Carrasco, L.; Hernandez-Cordoba, M. Analysis of nitrofuran residues in animal feed using liquid chromatography and photodiode-array detection. Chromatographia 2007, 65, 85–89. [Google Scholar] [CrossRef]
- Senyuva, H.Z.; Gilbert, J.; Turkoz, G.; Leeman, D.; Donnelly, C. Analysis of deoxynivalenol, zearalenone, T-2, and HT-2 toxins in animal feed by LC/MS/MS-A critical comparison of immunoaffinity column clean-up with no clean-up. J. AOAC Int. 2012, 95, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Varzakas, T.; Demopoulos, V.; Manolopoulou, E. Detection of aflatoxins, trichothecenes and zearalenone in food and animal feed by reversed phase HPLC and SPE. I Int. Symp. Mycotoxins Nuts Dried Fruits 2012, 963, 119–128. [Google Scholar] [CrossRef]
- Li, W.; Herrman, T.J.; Dai, S.Y. Determination of aflatoxins in animal feeds by liquid chromatography/tandem mass spectrometry with isotope. Rapid Commun. Mass Spectrom. 2011, 25, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Samanidou, V.F.; Evaggelopoulou, E.N. Chromatographic analysis of banned antibacterial growth promoters in animal feed. J. Sep. Sci. 2008, 31, 2091–2112. [Google Scholar] [CrossRef] [PubMed]
- Van Holthoon, F.; Mulder, P.P.J.; van Bennekom, E.O.; Heskamp, H.; Zuidema, T.; van Rhijn, H.A. Quantitative analysis of penicillins in porcine tissues, milk and animal feed using derivatisation with piperidine and stable isotope dilution liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 396, 3027–3040. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.M.; Jones, S.; Jesudian, G.; Begum, A. Feeding trials with lysine-fortified and threonine-fortified rice. Br. J. Nutr. 1973, 30, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Andersen, W.C.; Roybal, J.E.; Gonzales, S.A.; Turnipseed, S.B.; Pfenning, A.P.; Kuck, L.R. Determination of tetracycline residues in shrimp and whole milk using liquid chromatography with ultraviolet detection and residue confirmation by mass spectrometry. Anal. Chim. Acta 2005, 529, 145–150. [Google Scholar] [CrossRef]
- Karageorgou, E.; Armeni, M.; Moschou, I.; Samanidou, V. Ultrasound-assisted dispersive extraction for the high pressure liquid chromatographic determination of Tetracyclines residues in milk with diode array detection. Food Chem. 2014, 150, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.T.; Melo, J.; Barreto, F.; Hoff, R.B.; Jank, L.; Bittencourt, M.S.; Arsand, J.B.; Schapoval, E.E.S. A simple, fast and cheap non-SPE screening method for antibacterial residue analysis in milk and liver using liquid chromatography-tandem mass spectrometry. Talanta 2014, 129, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ding, T.; Wu, B.; Yang, W.; Zhang, X.; Liu, Y.; Shen, C.; Jiang, Y. Analysis of tetracycline residues in royal jelly by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2008, 868, 42–48. [Google Scholar] [CrossRef] [PubMed]
- AOAC Official Methods. Oxytetracycline/oxytetracycline hydrochloride in animal feed, fish feed and animal remedies. Off. Methods Anal. AOAC Int. 2008, 18, 82–87. [Google Scholar]
- Comission Decission 2002/657/EC. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Union 2002, 221, 8–36.
- Fernandez-González, R.; Garcı́a-Falcón, M.S.; Simal-Gándara, J. Quantitative analysis for oxytetracycline in medicated premixes and feeds by second-derivative synchronous spectrofluorimetry. Anal. Chim. Acta 2002, 455, 143–148. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Zhang, C.; Mo, Y.; Lu, X. Determination of oxytetracycline, tetracycline and chloramphenicol antibiotics in animal feeds using subcritical water extraction and high performance liquid chromatography. Anal. Chim. Acta 2008, 619, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Touraki, M.; Rigas, P.; Pergandas, P.; Kastritsis, C. Determination of oxytetracycline in the live fish feed Artemia using high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B 1995, 663, 167–171. [Google Scholar] [CrossRef]
- Kaklamanos, G.; Vincent, U.; von Holst, C. Analysis of antimicrobial agents in pig feed by liquid chromatography coupled to orbitrap mass spectrometry. J. Chromatogr. A 2013, 1293, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Boscher, A.; Guignard, C.; Pellet, T.; Hoffmann, L.; Bohn, T. Development of a multi-class method for the quantification of veterinary drug residues in feeding stuffs by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 6394–6404. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.; Barbosa, J.; Ramos, F. Multi-residue and multi-class method for the determination of antibiotics in bovine muscle by ultra-high-performance liquid chromatography tandem mass spectrometry. Meat Sci. 2014, 98, 58–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nebot, C.; Guarddon, M.; Seco, F.; Iglesias, A.; Miranda, J.M.; Franco, C.M.; Cepeda, A. Monitoring the presence of residues of Tetracyclines in baby food samples by HPLC-MS/MS. Food Control 2014, 46, 495–501. [Google Scholar] [CrossRef]
- Yang, J.; Ying, G.; Zhao, J.; Tao, R.; Su, H.; Chen, F. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC–MS/MS. Sci. Total Environ. 2010, 408, 3424–3432. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavilán, R.E.; Nebot, C.; Miranda, J.M.; Martín-Gómez, Y.; Vázquez-Belda, B.; Franco, C.M.; Cepeda, A. Analysis of Tetracyclines in Medicated Feed for Food Animal Production by HPLC-MS/MS. Antibiotics 2016, 5, 1. https://doi.org/10.3390/antibiotics5010001
Gavilán RE, Nebot C, Miranda JM, Martín-Gómez Y, Vázquez-Belda B, Franco CM, Cepeda A. Analysis of Tetracyclines in Medicated Feed for Food Animal Production by HPLC-MS/MS. Antibiotics. 2016; 5(1):1. https://doi.org/10.3390/antibiotics5010001
Chicago/Turabian StyleGavilán, Rosa Elvira, Carolina Nebot, Jose Manuel Miranda, Yolanda Martín-Gómez, Beatriz Vázquez-Belda, Carlos Manuel Franco, and Alberto Cepeda. 2016. "Analysis of Tetracyclines in Medicated Feed for Food Animal Production by HPLC-MS/MS" Antibiotics 5, no. 1: 1. https://doi.org/10.3390/antibiotics5010001
APA StyleGavilán, R. E., Nebot, C., Miranda, J. M., Martín-Gómez, Y., Vázquez-Belda, B., Franco, C. M., & Cepeda, A. (2016). Analysis of Tetracyclines in Medicated Feed for Food Animal Production by HPLC-MS/MS. Antibiotics, 5(1), 1. https://doi.org/10.3390/antibiotics5010001