Influence of Sterilized Human Fecal Extract on the Sensitivity of Salmonella enterica ATCC 13076 and Listeria monocytogenes ATCC 15313 to Enrofloxacin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth Kinetics of S. enterica and L. monocytogenes
2.2. Comparison of the Sequences of the QRDR and PFGE
2.3. Efflux Pump Inhibitors and Intracellular EtBr Accumulation in S. enterica
2.4. Effect of Enrofloxacin and Fecal Extract on S. enterica and L. monocytogenes Morphology
2.5. Effects of Sterilized Fecal Extract on Lipid Composition
2.6. Discussion
3. Experimental
3.1. Bacterial Strain, Growth Media and Reagents
3.2. Growth Kinetics of S. enterica and L. monocytogenes
3.3. Quinolone Resistance Determining Region (QRDR) and Pulsed-Field Gel Electrophoresis (PFGE)
3.4. Effect of Efflux Pump Inhibitors on Enrofloxacin Sensitivity and EtBr Accumulation in S. enterica
3.5. Negative Staining and Thin Sectioned Transmission Electron Microscopy (TEM)
3.6. Comparison of Fatty Acids of S. enterica and L. monocytogenes
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Croswell, A.; Amir, E.; Teggatz, P.; Barman, M.; Salzman, N.H. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect. Immun. 2009, 77, 2741–2753. [Google Scholar] [CrossRef]
- Costongs, G.M.P.J.; Bos, L.P.; Engels, L.G.J.B.; Janson, P.C.W. A new method for chemical-analysis of feces. Clin. Chim. Acta 1985, 150, 197–203. [Google Scholar] [CrossRef]
- Wlodarska, M.; Willing, B.; Keeney, K.M.; Menendez, A.; Bergstrom, K.S.; Gill, N.; Russell, S.L.; Vallance, B.A.; Finlay, B.B. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 2011, 79, 1536–1545. [Google Scholar] [CrossRef]
- Mitchell, J.M.; Griffiths, M.W.; McEwen, S.A.; McNab, W.B.; Yee, A.J. Antimicrobial drug residues in milk and meat: Causes, concerns, prevalence, regulations, tests, and test performance. J. Food Prot. 1998, 61, 742–756. [Google Scholar]
- Cerniglia, C.E.; Kotarski, S. Evaluation of veterinary drug residues in food for their potential to affect human intestinal microflora. Regul. Toxicol. Pharmacol. 1999, 29, 238–261. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Kotarski, S. Approaches in the safety evaluations of veterinary antimicrobial agents in food to determine the effects on the human intestinal microflora. J. Vet. Pharmacol. Ther. 2005, 28, 3–20. [Google Scholar] [CrossRef]
- Love, D.C.; Halden, R.U.; Davis, M.F.; Nachman, K.E. Feather meal: A previously unrecognized route for reentry into the food supply of multiple pharmaceuticals and personal care products (PPCPs). Environ. Sci. Technol. 2012, 46, 3795–3802. [Google Scholar] [CrossRef]
- San Martin, B.; Cornejo, J.; Iraguen, D.; Hidalgo, H.; Anadon, A. Depletion study of enrofloxacin and its metabolite ciprofloxacin in edible tissues and feathers of white Leghorn hens by liquid chromatography coupled with tandem mass spectrometry. J. Food Prot. 2007, 70, 1952–1957. [Google Scholar]
- Committee for Veterinary Medicinal Products. Enrofloxacin (Modification for Bovine, Porcine and Poultry). Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_ Residue_Limits_-_Report/2009/11/WC500014142.pdf (accessed on 30 May 2013).
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of Certain Veterinary Drug Residues in Food; WHO technical report series 879; WHO: Geneva, Switzerland, 1998. Available online: http://whqlibdoc.who.int/trs/WHO_TRS_879.pdf (accessed on 27 November 2013).
- Stephen, A.M.; Cummings, J.H. The microbial contribution to human fecal mass. J. Med. Microbiol. 1980, 13, 45–56. [Google Scholar] [CrossRef]
- Ahn, Y.; Sung, K.; Rafii, F.; Cerniglia, C.E. Effect of sterilized human fecal extract on the sensitivity of E. coli ATCC 25922 to enrofloxacin. J. Antibiot. 2012, 65, 179–184. [Google Scholar] [CrossRef]
- Capoor, M.R.; Nair, D.; Rajni; Khanna, G.; Krishna, S.V.; Chintamani, M.S.; Aggarwal, P. Microflora of bile aspirates in patients with acute cholecystitis with or without cholelithiasis: A tropical experience. Braz. J. Infect. Dis. 2008, 12, 222–225. [Google Scholar]
- Chen, W.X.; Li, D.; Paulus, B.; Wilson, I.; Chadwick, V.S. Detection of Listeria monocytogenes by polymerase chain reaction in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. J. Gastroenterol. Hepatol. 2000, 15, 1145–1150. [Google Scholar] [CrossRef]
- Braoudaki, M.; Hilton, A.C. Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int. J. Antimicrob. Agents 2005, 25, 31–37. [Google Scholar] [CrossRef]
- Ahn, Y.; Linder, S.W.; Veach, B.T.; Yan, S.S.; Fernandez, A.H.; Pineiro, S.A.; Cerniglia, C.E. In vitro enrofloxacin binding in human fecal slurries. Regul. Toxicol. Pharmacol. 2012, 62, 74–84. [Google Scholar] [CrossRef]
- Adjei, M.D.; Heinze, T.M.; Deck, J.; Freeman, J.P.; Williams, A.J.; Sutherland, J.B. Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Can. J. Microbiol. 2007, 53, 144–147. [Google Scholar] [CrossRef]
- Jung, C.M.; Heinze, T.M.; Strakosha, R.; Elkins, C.A.; Sutherland, J.B. Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J. Appl. Microbiol. 2009, 106, 564–571. [Google Scholar] [CrossRef]
- Gullberg, E.; Cao, S.; Berg, O.G.; Ilback, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011, 7, e1002158. [Google Scholar] [CrossRef]
- Piddock, L.J.V. Mechanisms of fluoroquinolone resistance: An update 1994–1998. Drugs 1999, 58, 11–18. [Google Scholar] [CrossRef]
- Ruiz, J. Mechanisms of resistance to quinolones: Target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother. 2003, 51, 1109–1117. [Google Scholar] [CrossRef]
- Soto, S.M.; Ruiz, J.; Mendoza, M.C.; Vila, J. In vitro fluoroquinolone-resistant mutants of Salmonella enterica serotype Enteritidis: Analysis of mechanisms involved in resistance. Int. J. Antimicrob. Agents 2003, 22, 537–540. [Google Scholar] [CrossRef]
- Amaral, L.; Cerca, P.; Spengler, G.; Machado, L.; Martins, A.; Couto, I.; Viveiros, M.; Fanning, S.; Pages, J.M. Ethidium bromide efflux by Salmonella: Modulation by metabolic energy, pH, ions and phenothiazines. Int. J. Antimicrob. Agents 2011, 38, 140–145. [Google Scholar] [CrossRef]
- Coldham, N.G.; Webber, M.; Woodward, M.J.; Piddock, L.J.V. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J. Antimicrob. Chemother. 2010, 65, 1655–1663. [Google Scholar] [CrossRef]
- Ricci, V.; Piddock, L. Accumulation of garenoxacin by Bacteroides fragilis compared with that of five fluoroquinolones. J. Antimicrob. Chemother. 2003, 52, 605–609. [Google Scholar] [CrossRef]
- Giraud, E.; Brisabois, A.; Martel, J.-L.; Chaslus-Dancla, E. Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a counter selection of highly fluoroquinolone-resistant strains in the field. Antimicrob. Agents Chemother. 1999, 43, 2131–2137. [Google Scholar]
- Eaves, D.J.; Liebana, E.; Woodward, M.J.; Piddock, L.J.V. Detection of gyrA mutations in quinolone-resistant Salmonella enterica by denaturing high-performance liquid chromatography. J. Clin. Microbiol. 2002, 40, 4121–4125. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow AerobicallyApproved Standard, 7th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006. [Google Scholar]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel-electrophoresis—Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar]
- Rafii, F.; Park, M.; Wynne, R. Evidence for active drug efflux in fluoroquinolone resistance in Clostridium hathewayi. Chemotherapy 2005, 51, 256–262. [Google Scholar]
- Bozzola, J.J.; Russell, L.D. Electron Microscopy: Principles and Techniques for Biologists, 2nd ed.; Jones & Bartlett Publishers, Inc.: Sudbury, MA, USA, 1999. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ahn, Y.; Stuckey, R.; Sung, K.; Rafii, F.; Cerniglia, C.E. Influence of Sterilized Human Fecal Extract on the Sensitivity of Salmonella enterica ATCC 13076 and Listeria monocytogenes ATCC 15313 to Enrofloxacin. Antibiotics 2013, 2, 485-499. https://doi.org/10.3390/antibiotics2040485
Ahn Y, Stuckey R, Sung K, Rafii F, Cerniglia CE. Influence of Sterilized Human Fecal Extract on the Sensitivity of Salmonella enterica ATCC 13076 and Listeria monocytogenes ATCC 15313 to Enrofloxacin. Antibiotics. 2013; 2(4):485-499. https://doi.org/10.3390/antibiotics2040485
Chicago/Turabian StyleAhn, Youngbeom, Ryan Stuckey, Kidon Sung, Fatemeh Rafii, and Carl E. Cerniglia. 2013. "Influence of Sterilized Human Fecal Extract on the Sensitivity of Salmonella enterica ATCC 13076 and Listeria monocytogenes ATCC 15313 to Enrofloxacin" Antibiotics 2, no. 4: 485-499. https://doi.org/10.3390/antibiotics2040485
APA StyleAhn, Y., Stuckey, R., Sung, K., Rafii, F., & Cerniglia, C. E. (2013). Influence of Sterilized Human Fecal Extract on the Sensitivity of Salmonella enterica ATCC 13076 and Listeria monocytogenes ATCC 15313 to Enrofloxacin. Antibiotics, 2(4), 485-499. https://doi.org/10.3390/antibiotics2040485