TDM-Guided Dalbavancin Treatment for Complex Staphylococcus aureus Osteoarticular Infections in Children
Abstract
1. Introduction
2. Results
2.1. Pharmacokinetics Analysis and TDM
- Therapeutic stability (post-dose weeks 2–3): Concentrations remained high and stable, ranging from 14.76 mg/L to 14.28 mg/L. Post-dose week 3 showed the lowest inter-individual variability (coefficient of variation (CV) = 9.80%), and paired t-tests confirmed no statistically significant difference compared to week 2 (p = 0.843);
- Limit of optimal coverage (post-dose week 4 onwards): A critical breakpoint was identified starting from the fourth week, marking the limit for optimal coverage (defined as concentration < 8 mg/L). A significant reduction in concentration was detected at post-dose week 4 (mean 6.06 mg/L; p = 0.005). This significant decline persisted in later phases (post-dose week 5 and ≥6: p = 0.001), accompanied by a progressive increase in variability (CV up to 50.98%).
2.2. Optimization Resource Analysis
3. Discussion
3.1. Clinical Efficacy and Safety in the Pediatric Context
3.2. Pharmacokinetic Analysis: Stationarity and the Week-4 Breakpoint
3.3. The Role of TDM and the Predictors of Exposure
3.4. Resource Optimization and Quality of Life
3.5. Limitations and Future Directions
4. Materials and Methods
4.1. Study Design and Population
4.2. Treatment Protocol and Therapeutic Drug Monitoring
4.3. Data Collection and Outcomes
- Clinical primary outcome (total cohort): Clinical efficacy and safety. Clinical efficacy was defined as the complete resolution of clinical, hematological, and instrumental signs of infection with no recurrence during a follow-up period of at least 6 months;
- Pharmacokinetic primary outcome (TDM subgroup): An assessment of the pharmacokinetic feasibility of extending dosing intervals by analyzing the decay of plasma concentrations and identifying the duration of effective therapeutic coverage in a real-world pediatric setting.
4.4. Statistical and Pharmacokinetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABSSSI | Acute Bacterial Skin and Skin Structure Infection |
| AE | Adverse Event |
| ALL | Acute Lymphoblastic Leukemia |
| CHD | Congenital Heart Disease |
| CI | Confidence Interval |
| Cmax | Peak Plasma Concentration (Post-Infusion) |
| CRBSI | Catheter-Related Bloodstream Infection |
| Ctrough | Trough Plasma Concentration |
| CV | Coefficient of Variation |
| CVC | Central Venous Catheter |
| df | Degrees of Freedom |
| eGFR | Estimated Glomerular Filtration Rate |
| EMA | European Medicines Agency |
| EMMs | Estimated Marginal Means |
| FDA | Food and Drug Administration |
| IQR | Interquartile Range |
| IV | Intravenous |
| LC-MS/MS | Liquid Chromatography–Tandem Mass Spectrometry |
| LOS | Length of Stay |
| MIC | Minimum Inhibitory Concentration |
| MRSA | Methicillin-Resistant Staphylococcus aureus |
| MSSA | Methicillin-Susceptible Staphylococcus aureus |
| NA | Not Available |
| OAI | Osteoarticular Infection |
| OR | Odds Ratio |
| PD | Post Discharge |
| PJI | Prosthetic Joint Infection |
| PK | Pharmacokinetics |
| PK/PD | Pharmacokinetic/Pharmacodynamic |
| Pt | Patient |
| PVL | Panton–Valentine Leucocidin |
| SD | Standard Deviation |
| SE | Standard Error |
| SoC | Standard of Care |
| TDM | Therapeutic Drug Monitoring |
References
- Campbell, A.J.; Al Yazidi, L.S.; Phuong, L.K.; Leung, C.; Best, E.J.; Webb, R.H.; Voss, L.; Athan, E.; Britton, P.N.; Bryant, P.A.; et al. Pediatric Staphylococcus aureus Bacteremia: Clinical Spectrum and Predictors of Poor Outcome. Clin. Infect. Dis. 2022, 74, 604–613. [Google Scholar] [CrossRef]
- Woods, C.R.; Bradley, J.S.; Chatterjee, A.; Copley, L.A.; Robinson, J.; Kronman, M.P.; Arrieta, A.; Fowler, S.L.; Harrison, C.; Carrillo-Marquez, M.A.; et al. Clinical Practice Guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2021 Guideline on Diagnosis and Management of Acute Hematogenous Osteomyelitis in Pediatrics. J. Pediatr. Infect. Dis. Soc. 2021, 10, 801–844. [Google Scholar] [CrossRef]
- Esposito, S.; Bassetti, M.; Concia, E.; De Simone, G.; De Rosa, F.G.; Grossi, P.; Novelli, A.; Menichetti, F.; Petrosillo, N.; Tinelli, M.; et al. Diagnosis and Management of Skin and Soft-Tissue Infections (SSTI). A Literature Review and Consensus Statement: An Update. J. Chemother. 2017, 29, 197–214. [Google Scholar] [CrossRef]
- Nelson, S.B.; Pinkney, J.A.; Chen, A.F.; Tande, A.J. Periprosthetic Joint Infection: Current Clinical Challenges. Clin. Infect. Dis. 2023, 77, E34–E45. [Google Scholar] [CrossRef]
- Alves, S.; Rangel, M.A.; Baptista, C.; Santos, M.; Rodrigues, L.; Moreira, D. Adverse Events in Long-Course Intravenous Antibiotic Therapy for Pediatric Osteoarticular Infections. Port. J. Pediatr. 2019, 50, 160–167. [Google Scholar] [CrossRef]
- Gould, I.M.; Reilly, J.; Bunyan, D.; Walker, A. Costs of Healthcare-Associated Methicillin-Resistant Staphylococcus aureus and Its Control. Clin. Microbiol. Infect. 2010, 16, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Khatri, A.; Verma, M.; Patidar, A.B.; Kumari, P.; Akram, H. Evaluating the Challenges of Oral Drug Administration in Children: A Review. Int. J. Contemp. Pediatr. 2025, 12, 865–869. [Google Scholar] [CrossRef]
- Salvatore, D.; Moore, J.; Steuber, T.D. Long-Acting Lipoglycopeptides Compared to Standard-of-Care for the Treatment of Complicated Gram-Positive Infections: A Systematic Review and Meta-Analysis. Int. J. Antimicrob. Agents 2025, 66, 107581. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Miranda, C.; Bezerra, M.; Antão, H.S.; Guimarães, J.; Prada, J.; Pires, I.; Maltez, L.; Pereira, J.E.; Capelo, J.L.; et al. Anti-Biofilm Activity of Dalbavancin against Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Human Bone Infection. J. Chemother. 2021, 33, 469–475. [Google Scholar] [CrossRef]
- Rappo, U.; Puttagunta, S.; Shevchenko, V.; Shevchenko, A.; Jandourek, A.; Gonzalez, P.L.; Suen, A.; Mas Casullo, V.; Melnick, D.; Miceli, R.; et al. Dalbavancin for the Treatment of Osteomyelitis in Adult Patients: A Randomized Clinical Trial of Efficacy and Safety. Open Forum. Infect. Dis. 2019, 6, ofy331. [Google Scholar] [CrossRef]
- Smith, J.R.; Roberts, K.D.; Rybak, M.J. Dalbavancin: A Novel Lipoglycopeptide Antibiotic with Extended Activity Against Gram-Positive Infections. Infect. Dis. Ther. 2015, 4, 245–258. [Google Scholar] [CrossRef]
- Almangour, T.A.; Alrasheed, M.A. Dalbavancin for the Treatment of Bone and Joint Infections: A Meta-Analysis. J. Infect. Chemother. 2025, 31, 102473. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA) Dalvance. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/021883Orig1s012lbl.pdf (accessed on 28 November 2025).
- European Medicines Agency (EMA) Xydalba. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xydalba#:~:text=Xydalba%20is%20an%20antibiotic%20used,skin%20abscesses%20and%20wound%20infections (accessed on 28 November 2025).
- Caselli, D.; Mariani, M.; Colomba, C.; Ferrecchi, C.; Cafagno, C.; Trotta, D.; Carloni, I.; Dibello, D.; Castagnola, E.; Aricò, M. Real-World Use of Dalbavancin for Treatment of Soft Tissue and Bone Infection in Children: Safe, Effective and Hospital-Time Sparing. Children 2024, 11, 78. [Google Scholar] [CrossRef]
- Caselli, D.; Aricò, M.; Castagnola, E.; Gatti, M. Bridging the Gap: A Systematic Review with Expert Opinion on the Use of Dalbavancin for In-Label and Off-Label Indications in Pediatric Patients. Antibiotics 2025, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Lovatti, S.; Tiecco, G.; Mulé, A.; Rossi, L.; Sforza, A.; Salvi, M.; Signorini, L.; Castelli, F.; Quiros-Roldan, E. Dalbavancin in Bone and Joint Infections: A Systematic Review. Pharmaceuticals 2023, 16, 1005. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Viale, P.; Cojutti, P.G.; Zamparini, E.; De Paolis, M.; Giannella, M.; Pea, F.; Tedeschi, S. A Descriptive Case Series of the Relationship between Maintenance of Conservative PK/PD Efficacy Thresholds of Dalbavancin over Time and Clinical Outcome in Long-Term Treatment of Staphylococcal Osteoarticular Infections. Int. J. Antimicrob. Agents 2023, 61, 106773. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Tedeschi, S.; Gatti, M.; Zamparini, E.; Meschiari, M.; Siega, P.D.; Mazzitelli, M.; Soavi, L.; Binazzi, R.; Erne, E.M.; et al. Population Pharmacokinetic and Pharmacodynamic Analysis of Dalbavancin for Long-Term Treatment of Subacute and/or Chronic Infectious Diseases: The Major Role of Therapeutic Drug Monitoring. Antibiotics 2022, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- Baiardi, G.; Cameran Caviglia, M.; Boni, S.; Di Paolo, A.; Marini, V.; Cangemi, G.; Cafaro, A.; Pontali, E.; Mattioli, F. Multidose Dalbavancin Population Pharmacokinetic Analysis for Prolonged Target Attainment in Patients Requiring Long-Term Treatment. Antibiotics 2025, 14, 190. [Google Scholar] [CrossRef]
- Dunne, M.W.; Puttagunta, S.; Sprenger, C.R.; Rubino, C.; Van Wart, S.; Baldassarre, J. Extended-Duration Dosing and Distribution of Dalbavancin into Bone and Articular Tissue. Antimicrob. Agents Chemother. 2015, 59, 1849–1855. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Rinaldi, M.; Zamparini, E.; Rossi, N.; Tedeschi, S.; Conti, M.; Pea, F.; Viale, P. Population Pharmacokinetics of Dalbavancin and Dosing Consideration for Optimal Treatment of Adult Patients with Staphylococcal Osteoarticular Infections. Antimicrob. Agents Chemother. 2023, 65, e02260. [Google Scholar] [CrossRef]
- Cattaneo, D.; Fusi, M.; Galli, L.; Genovese, C.; Giorgi, R.; Matone, M.; Merli, S.; Colaneri, M.; Gori, A. Proactive Therapeutic Monitoring of Dalbavancin Concentrations in the Long-Term Management of Chronic Osteoarticular/ Periprosthetic Joint Infections. Antimicrob. Agents Chemother. 2024, 68, e00023-24. [Google Scholar] [CrossRef]
- Mariani, C.; Passerini, M.; Galli, L.; Covizzi, A.; Colaneri, M.; Offer, M.; Faenzi, M.; Merli, S.; Landonio, S.; Fusi, M.; et al. Proactive Therapeutic Drug MONiToring to Guide Suppressive Antibiotic Therapy with DALBAvaNcin (>12 Weeks) in Osteoarticular Infections (MONTALBANO). J. Bone Jt. Infect. 2025, 10, 255–263. [Google Scholar] [CrossRef]
- Carrothers, T.J.; Chittenden, J.T.; Critchley, I. Dalbavancin Population Pharmacokinetic Modeling and Target Attainment Analysis. Clin. Pharmacol. Drug Dev. 2020, 9, 21–31. [Google Scholar] [CrossRef]
- Agenzia Italiana del Farmaco (AIFA) Dalbavancina; AIFA: Rome, Italy, 2025; Available online: https://share.google/jqzzWJctC07RgwGop (accessed on 28 November 2025).
- Kearns, G.L.; Abdel-Rahman, S.M.; Alander, S.W.; Blowey, D.L.; Leeder, J.S.; Kauffman, R.E. Developmental Pharmacology—Drug Disposition, Action, and Therapy in Infants and Children. N. Engl. J. Med. 2003, 12, 349. [Google Scholar] [CrossRef]
- Rhoney, D.H.; Metzger, S.A.; Nelson, N.R. Scoping Review of Augmented Renal Clearance in Critically Ill Pediatric Patients. Pharmacotherapy 2021, 41, 851–863. [Google Scholar] [CrossRef]
- Bradley, J.S.; Puttagunta, S.; Rubino, C.M.; Blumer, J.L.; Dunne, M.; Sullivan, J.E. Pharmacokinetics, Safety and Tolerability of Single Dose Dalbavancin in Children 12–17 Years of Age. Pediatr. Infect. Dis. J. 2015, 34, 748–752. [Google Scholar] [CrossRef]
- Gonzalez, D.; Bradley, J.S.; Blumer, J.; Yogev, R.; Watt, K.M.; James, L.P.; Palazzi, D.L.; Bhatt-Mehta, V.; Sullivan, J.E.; Zhang, L.; et al. Dalbavancin Pharmacokinetics and Safety in Children 3 Months to 11 Years of Age. Pediatr. Infect. Dis. J. 2017, 36, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Carrothers, T.J.; Lagraauw, H.M.; Lindbom, L.; Riccobene, T.A. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Target Attainment Analyses for Dalbavancin in Pediatric Patients. Pediatr. Infect. Dis. J. 2023, 42, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Cojutti, P.G.; Rinaldi, M.; Gatti, M.; Tedeschi, S.; Viale, P.; Pea, F. Usefulness of Therapeutic Drug Monitoring in Estimating the Duration of Dalbavancin Optimal Target Attainment in Staphylococcal Osteoarticular Infections: A Proof-of-Concept. Int. J. Antimicrob. Agents 2021, 58, 106445. [Google Scholar] [CrossRef]
- Guillén-Martínez, M.; Aguilera-Alonso, D.; Santos-Pérez, J.L.; Vázquez-Pérez, Á.; Ramos-Amador, J.T.; Prieto Tato, L.M. Off-Label Use of Dalbavancin in Pediatric Gram-Positive Infections. Pediatr. Infect. Dis. J. 2025, 44, e389–e393. [Google Scholar] [CrossRef] [PubMed]
- Jame, W.; Basgut, B.; Abdi, A. Efficacy and Safety of Novel Glycopeptides versus Vancomycin for the Treatment of Gram-Positive Bacterial Infections Including Methicillin Resistant Staphylococcus aureus: A Systematic Review and Meta-Analysis. PLoS ONE 2021, 16, e0260539. [Google Scholar] [CrossRef]
- Hervochon, C.; Hennart, B.; Leroy, A.G.; Corvec, S.; Boutoille, D.; Senneville, É.; Sotto, A.; Illes, G.; Chavanet, P.; Dubée, V.; et al. Dalbavancin Plasma Concentrations in 133 Patients: A PK/PD Observational Study. J. Antimicrob. Chemother. 2023, 78, 2919–2925. [Google Scholar] [CrossRef]
- Lafon-Desmurs, B.; Gachet, B.; Hennart, B.; Valentin, B.; Roosen, G.; Degrendel, M.; Loiez, C.; Beltrand, E.; D’Elia, P.; Migaud, H.; et al. Dalbavancin as Suppressive Therapy for Implant-Related Infections: A Case Series with Therapeutic Drug Monitoring and Review of the Literature. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Poliseno, M.; Bavaro, D.F.; Brindicci, G.; Luzzi, G.; Carretta, D.M.; Spinarelli, A.; Messina, R.; Miolla, M.P.; Achille, T.I.; Dibartolomeo, M.R.; et al. Dalbavancin Efficacy and Impact on Hospital Length-of-Stay and Treatment Costs in Different Gram-Positive Bacterial Infections. Clin. Drug Investig. 2021, 41, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Mula, J.; Chiara, F.; Manca, A.; Palermiti, A.; Maiese, D.; Cusato, J.; Simiele, M.; De Rosa, F.G.; Di Perri, G.; De Nicolò, A.; et al. Analytical Validation of a Novel UHPLC-MS/MS Method for 19 Antibiotics Quantification in Plasma: Implementation in a LC-MS/MS Kit. Biomed. Pharmacother. 2023, 163, 114790. [Google Scholar] [CrossRef] [PubMed]





| Patient | Dalbavancin Therapy | TDM Samples | ||||||
|---|---|---|---|---|---|---|---|---|
| ID | Age (Years) | Weight (kg) | eGFR (mL/min) | No. of Doses (n) | Dalbavancin Administration (Weeks of Therapy) | Total Samples (n) | Peak Samples (n) | Trough Samples (n) |
| 1 | 15 | 36 | 89.29 | 6 | 0, 2, 7, 14, 19, 25 | 12 | 3 | 9 |
| 2 | 9 | 27 | 144.50 | 5 | 0, 2, 6, 12, 16 | 10 | 4 | 6 |
| 3 | 9 | 29 | 132.82 | 3 | 0, 1, 7 | 5 | 2 | 3 |
| 5 | 14 | 46 | 142.56 | 5 | 0, 1, 7, 12, 17 | 10 | 4 | 6 |
| 6 | 16 | 47 | 143.18 | 4 | 0, 1, 9, 16 | 3 | 1 | 2 |
| 8 | 15 | 45 | 122.30 | 4 | 0, 1, 6, 11 | 8 | 3 | 5 |
| 9 | 12 | 67 | 157.29 | 3 | 0, 1, 6 | 6 | 3 | 3 |
| 11 | 15 | 54 | 111.73 | 8 | 0, 1, 4, 9, 14, 19, 24, 29 | 18 | 7 | 11 |
| 12 | 5 | 27 | 147.01 | 3 | 0, 1, 4 | 7 | 3 | 4 |
| Shapiro–Wilk | |||||||
|---|---|---|---|---|---|---|---|
| Mean (mg/L) | SD (mg/L) | CV (%) | Minimum (mg/L) | Maximum (mg/L) | W | p | |
| Post-infusion | 261.62 | 84.49 | 32.29 | 40.64 | 500.56 | 0.936 | 0.080 |
| Post-dose 1 week | 36.04 | 14.12 | 39.18 | 13.23 | 51.56 | 0.942 | 0.677 |
| Post-dose 2 week | 14.76 | 3.74 | 25.34 | 9.91 | 21.11 | 0.957 | 0.784 |
| Post-dose 3 week | 14.28 | 1.40 | 9.80 | 12.75 | 16.40 | 0.942 | 0.679 |
| Post-dose 4 week | 6.06 | 1.71 | 28.22 | 3.90 | 8.84 | 0.965 | 0.858 |
| Post-dose 5 week | 4.84 | 1.49 | 30.79 | 2.73 | 8.18 | 0.933 | 0.437 |
| Post-dose ≥ 6 week | 4.59 | 2.34 | 50.98 | 0.00 | 8.28 | 0.960 | 0.790 |
| Statistic | df | p | ||
|---|---|---|---|---|
| Post-dose 2 week | Post-dose 3 week | 0.224 | 2.00 | 0.843 |
| Post-dose 4 week | 7.521 | 3.00 | 0.005 | |
| Post-dose 5 week | 8.172 | 4.00 | 0.001 | |
| Post-dose ≥ 6 week | 5.650 | 6.00 | 0.001 |
| 95% Confidence Interval | |||||||
|---|---|---|---|---|---|---|---|
| Estimate | SE | Z | p | Odds Ratio | Lower | Upper | |
| Intercept | 4.4306 | 10.0843 | 0.439 | 0.660 | 83.985 | 2.19 × 10−7 | 3.22 × 1010 |
| Age (years) | 0.0348 | 0.3362 | 0.103 | 0.918 | 1.035 | 0.536 | 2.00 |
| Dose (mg/kg) | −0.3058 | 0.2058 | −1.486 | 0.137 | 0.737 | 0.492 | 1.10 |
| Days of therapy (days) | −0.0345 | 0.0208 | −1.653 | 0.098 | 0.966 | 0.927 | 1.01 |
| Ctrough timing (weeks) | 1.0862 | 0.4445 | 2.444 | 0.015 | 2.963 | 1.240 | 7.08 |
| eGFR (mL/min) | −0.0334 | 0.0415 | −0.805 | 0.421 | 0.967 | 0.892 | 1.05 |
| 95% Confidence Interval | |||||||
|---|---|---|---|---|---|---|---|
| Estimate | SE | Z | p | Odds Ratio | Lower | Upper | |
| Intercept | −1.53561 | 7.99979 | −0.1920 | 0.848 | 0.215 | 3.34 × 10−8 | 1.39 × 106 |
| Age (years) | −0.07252 | 0.19706 | −0.3680 | 0.713 | 0.930 | 0.632 | 1.37 |
| Dose (mg/kg) | −0.10042 | 0.20949 | −0.4794 | 0.632 | 0.904 | 0.600 | 1.36 |
| Days of therapy (days) | 0.00309 | 0.00985 | 0.3133 | 0.754 | 1.003 | 0.984 | 1.02 |
| Ctrough timing (weeks) | 1.11440 | 0.32754 | 3.4023 | <0.001 | 3.048 | 1.604 | 5.79 |
| eGFR (mL/min) | −8.04 × 10−4 | 0.03279 | −0.0245 | 0.980 | 0.999 | 0.937 | 1.07 |
| Percentiles | One-Sample t-Test | |||||
|---|---|---|---|---|---|---|
| Median | Min–Max | 25th | 75th | t-Value | p-Value | |
| Hospitalization days saved | 8.50 | 0–19 | 5.00 | 8.50 | t = 5.74 | <0.001 |
| CVC days saved | 6 | 0–10 | 1.00 | 6 | t = 3.59 | 0.009 |
| Hospitalization cost saved (€) | 5852.25 | 0–13,082 | 3442.50 | 5852.25 | t = 5.74 | <0.001 |
| Final net saving (€) | 3215.84 | −6358–7840 | −738.79 | 3215.84 | t = 3.45 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Garazzino, S.; Mazzetti, G.; Sandei, M.; Vitale, R.; Martino, C.; Palermiti, A.; De Nicolò, A.; Funiciello, E.; Aprato, A.; Gerace, A.; et al. TDM-Guided Dalbavancin Treatment for Complex Staphylococcus aureus Osteoarticular Infections in Children. Antibiotics 2026, 15, 162. https://doi.org/10.3390/antibiotics15020162
Garazzino S, Mazzetti G, Sandei M, Vitale R, Martino C, Palermiti A, De Nicolò A, Funiciello E, Aprato A, Gerace A, et al. TDM-Guided Dalbavancin Treatment for Complex Staphylococcus aureus Osteoarticular Infections in Children. Antibiotics. 2026; 15(2):162. https://doi.org/10.3390/antibiotics15020162
Chicago/Turabian StyleGarazzino, Silvia, Giulia Mazzetti, Matteo Sandei, Raffaele Vitale, Camilla Martino, Alice Palermiti, Amedeo De Nicolò, Elisa Funiciello, Alessandro Aprato, Alessia Gerace, and et al. 2026. "TDM-Guided Dalbavancin Treatment for Complex Staphylococcus aureus Osteoarticular Infections in Children" Antibiotics 15, no. 2: 162. https://doi.org/10.3390/antibiotics15020162
APA StyleGarazzino, S., Mazzetti, G., Sandei, M., Vitale, R., Martino, C., Palermiti, A., De Nicolò, A., Funiciello, E., Aprato, A., Gerace, A., Bondi, A., Curtoni, A., D’Avolio, A., & Denina, M. (2026). TDM-Guided Dalbavancin Treatment for Complex Staphylococcus aureus Osteoarticular Infections in Children. Antibiotics, 15(2), 162. https://doi.org/10.3390/antibiotics15020162

