Institutional Practices Drive Antibiotic Variability in Neonatal Intensive Care Units: Baseline Evidence to Inform National Stewardship Interventions in Oman
Abstract
1. Introduction
- Quantify baseline antibiotic consumption across seven NICUs in Oman;
- Assess the influence of neonatal demographics and culture-positive sepsis incidence on antibiotic utilization;
- Determine whether variability in antibiotic use is primarily driven by neonatal characteristics or by institutional practice patterns. By identifying key determinants of antibiotic variability, this study provides critical evidence to inform national stewardship policy and optimize antibiotic prescribing practices in neonatal care.
2. Results
2.1. Baseline Neonatal Characteristics
2.2. Baseline Characteristics of Individual NICU Patients Who Received Antimicrobials in the Enrolled NICUs
| NICUS | A | B | C | D | E | F | G | Total | p-Value |
|---|---|---|---|---|---|---|---|---|---|
| Total NICU admissions | 5584 | 4330 | 2192 | 4090 | 2937 | 3551 | 2848 | 25,532 | |
| Number of patients who received antimicrobials n, (%) | 1327 (24) | 1990 (46) | 1554 (71) | 2999 (73) | 1317 (45) | 1256 (35) | 728 (25) | 11,171 (43.8) | 0.001 |
| BW in gm. mean (SD) | 2263 (1031) | 2483 (930) | 2413 (901) | 2286 (966) | 2451.29 (980) | 2317 (1000) | 2309 (998) | 2360 (970) | 0.01 |
| GA Mean (SD) | 34.5 (5) | 35 (4) | 35.6 (4) | 34.6 (4) | 35.7 (4) | 34.7 (5) | 34.9 (5) | 35.1 (4) | 0.01 |
| Male n (%) | 717 (54) | 1215 (61) | 883 (57) | 1747 (58) | 754 (57) | 702 (56) | 409 (56) | 6427 (58) | <0.001 |
| AS-1 Median (IQR) | 8 (6,8) | 7 (7,8) | 6.6 (5,8) | 8 (6,8) | 8 (9,9) | 7 (7,9) | 6.5 (6,8) | 8 (6,8) | <0.001 |
| AS-5 median (IQR) | 9 (9,10) | 9 (9,9) | 8 (8,9) | 8 (8,9) | 8 (8,10) | 9 (9,10) | 8.2 (8,9) | 9 (8,9) | <0.001 |
| C-section n/Total (%) | 614/2646 (23) | 956/2169 (48) | 863/1554 (55) | 1786/2999 (49) | 569/1317 (43) | 545/1256 (43) | 348/728 (48) | 5490 (49) | <0.001 |
2.3. Antimicrobial Usage and Variability
| NICU Names | A | B | C | D | E | F | G | Total | p a Value |
|---|---|---|---|---|---|---|---|---|---|
| Total Admissions b | 5584 | 4330 | 2192 | 4090 | 2937 | 3551 | 2848 | 25,532 | |
| Total Patients AU n (%) | 1327 (24) | 1990 (46) | 1554 (71) | 2999 (73) | 1317 (45) | 1256 (35) | 728 (26) | 11,171 (44) | <0.001 |
| Total antimicrobial days | 13,098 | 23,196 | 17,680 | 37,683 | 12,793 | 10,022 | 8761 | 123,233 | <0.001 |
| DOT c | 322 | 886 | 1031 | 897 | 765 | 361 | 492 | 654 | <0.001 |
| Ampicillin d n (%) | 1077 (81) | 1781 (89) | 1456 (94) | 2701 (90) | 1223 (93) | 1155 (92) | 659 (90) | 10,052 (90) | <0.001 |
| Ampicillin d days | 4103 | 7821 | 6213 | 2373 | 5432 | 3975 | 2641 | 20,721 | <0.001 |
| Ampicillin d DOT c | 101 | 299 | 362 | 295 | 325 | 143 | 148 | 110 | <0.001 |
| Ampicillin > 3 days n (%) | 369 (34) | 638 (36) | 658 (45) | - | - | 388 (34) | 332 (50) | - | |
| Gentamicin n (%) | 1225 (92) | 1827 (92) | 666 (43) | 2721 (91) | 1217(92) | 1075 (86) | 661 (91) | 9392 (84) | |
| Gentamicin Days | 4295 | 6569 | 2339 | 10,055 | 4132 | 2293 | 2116 | 31,799 | <0.001 |
| Gentamicin DOT | 106 | 251 | 136 | 239 | 247 | 83 | 119 | 169 | <0.001 |
| Amikacin n (%) | 160 (12) | 22 (1) | 925 (60) | 448 (15) | 27 (2) | 139 (11) | 31 (4) | 1752 (16) | |
| Amikacin Days | 507 | 105 | 2922 | 1961 | 100 | 419 | 166 | 6180 | <0.001 |
| Amikacin DOT | 12 | 4 | 170 | 47 | 6 | 15 | 9 | 33 | <0.001 |
| BSA, n (%) | 288 (22) | 521 (26) | 442 (28) | 956 (32) | 128 (10) | 288 (23) | 198 (27) | 2821 (25) | <0.01 |
| BSA days | 3218 | 6373 | 5406 | 11,114 | 1182 | 2700 | 2512 | 32,505 | <0.001 |
| BSA DOT | 79 | 243 | 315 | 265 | 71 | 97 | 141 | 173 | <0.001 |
| Others n, (%) | 201 (15) | 567 (28) | 178 (11) | 904 (30) | 132 (10) | 150 (12) | 231 (32) | 2360 (21) | <0.003 |
| Other days | 1204 | 4716 | 1177 | 6481 | 784 | 890 | 2110 | 17,362 | <0.001 |
| Other DOT | 30 | 180 | 69 | 154 | 47 | 32 | 118 | 92 | <0.001 |
| Sepsis e | 190 (3.4) | 225 (5.2) | 224 (10.2) | 275 (6.7) | - | 131 (3.7) | 102 (3.6) | 1134 (4.4) | <0.01 |
| Surgery n (%) | 261 (4.6) | 57 (1.3) | 27 (1.1) | 103 (2.5) | 126 (4.3) | 70 (2.0) | 17 (1) | - | |
| Mortality f (%) | 7.2 vs. 1.8 | 5.9 vs. 2.5 | 8.3 vs. 6.6 | 8.6 vs. 4.5 | 6.3 vs. 2 | 7.4 vs. 1.8 | 8.5 vs. 1.4 | 7.5 vs. 2.3 | 0.000 |
2.4. Influence of Neonatal and Institutional Factors
3. Discussion
3.1. Variability in Context: Global and Regional
3.2. Culture-Negative Sepsis and Antimicrobial Utilization
3.3. Risk Stratification and Stewardship Implications
3.4. Impact of the Presence of Structured ASP and Neonatologist at the Frontline in NICU
3.5. Implications for Clinical Practice: Local, Regional, and Global
- (1)
- Establishment of multidisciplinary stewardship teams in units currently lacking structured programs;
- (2)
- Development and dissemination of national guidelines for empiric antibiotic therapy in neonates, with explicit initiation criteria and maximum durations for culture-negative cases;
- (3)
- Implementation of standardized DOT reporting across all NICUs to enable ongoing monitoring and benchmarking;
- (4)
- Creation of a national learning collaborative to facilitate knowledge sharing between units and rapid dissemination of effective practices;
- (5)
- Leveraging existing infrastructure: having one NICU with a well-established structured ASP offers a proven internal model and resources that can support scaling up nationally. Each unit should adapt interventions to the local context, prescribing patterns, and available resources.
3.6. Strengths, Weaknesses, and Novelty
4. Materials and Methods
4.1. Study Design and Setting
4.2. Study Population
4.3. Data Collection and Collection Process
4.4. Outcome Measured
- The total number of neonates admitted to each NICU who received at least one antibiotic.
- The antibiotic utilization rate, expressed as DOT per 1000 patient-days.
- The incidence of blood culture-positive sepsis,
- Variation in antimicrobial use among neonates with culture-negative sepsis,
- Microbial profile of culture-positive sepsis,
- Mortality in neonates who received antimicrobial agents compared to those who did not.
4.5. Statistical Analysis
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Recommendations for Management of Serious Bacterial Infections in Infants Aged 0–59 Days; WHO: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Fact Sheet on Newborn Mortality. Updated 14 March 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/newborn-mortality (accessed on 2 November 2025).
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global incidence and mortality of neonatal sepsis: A systematic review and meta-analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.J.; Stöhr, W.; Plakkal, N.; Cook, A.; Berkley, J.A.; Adhisivam, B.; Agarwal, R.; Ahmed, N.U.; Balasegaram, M.; Ballot, D.; et al. Patterns of antibiotic use, pathogens, and prediction of mortality in hospitalized neonates and young infants with sepsis: A global neonatal sepsis observational cohort study (NeoOBS). PLoS Med. 2023, 20, e1004179. [Google Scholar] [CrossRef] [PubMed]
- Investigators of the Delhi Neonatal Infection Study (DeNIS) Collaboration. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: A cohort study. Lancet Glob. Health 2016, 4, e752–e760. [Google Scholar] [CrossRef]
- Dramowski, A.; Bolton, L.; Fitzgerald, F.; Bekker, A.; NeoNET AFRICA Partnership. Neonatal Sepsis in Low- and Middle-income Countries: Where Are We Now? Pediatr. Infect. Dis. J. 2025, 44, e207–e210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Turkait, A.; Szatkowski, L.; Choonara, I.; Ojha, S. Review of Drug Utilization Studies in Neonatal Units: A Global Perspective. Int. J. Environ. Res. Public Health 2020, 17, 5669. [Google Scholar] [CrossRef]
- Cantey, J.B.; Wozniak, P.S.; Sanchez, P.J. Prospective surveillance of antibiotic use in the neonatal intensive care unit: Results from the SCOUT study. Pediatr. Infect. Dis. J. 2015, 34, 267–272. [Google Scholar] [CrossRef]
- Prusakov, P.; Goff, D.A.; Wozniak, P.S.; Cassim, A.; Scipion, C.E.; Urzúa, S.; Ronchi, A.; Zeng, L.; Ladipo-Ajayi, O.; Aviles-Otero, N.; et al. A global point prevalence survey of antimicrobial use in neonatal intensive care units: The no-more-antibiotics and resistance (NO-MAS-R) study. E Clin. Med. 2021, 32, 100727. [Google Scholar] [CrossRef]
- Ting, J.Y.; Synnes, A.; Roberts, A.; Deshpandey, A.; Dow, K.; Yoon, E.W.; Lee, K.-S.; Dobson, S.; Lee, S.K.; Shah, P.S.; et al. Association Between Antibiotic Use and Neonatal Mortality and Morbidities in Very Low-Birth-Weight Infants Without Culture-Proven Sepsis or Necrotizing Enterocolitis. JAMA Pediatr. 2016, 170, 1181–1187. [Google Scholar] [CrossRef]
- Malviya, M.N.; Murthi, S.; Selim, A.A.; Malik, F.; Jayraj, D.; Mendoza, J.; Ramdas, V.; Rasheed, S.; Al Jabri, A.; Al Sabri, R.; et al. A Neonatologist-Driven Antimicrobial Stewardship Program in a Neonatal Tertiary Care Center in Oman. Am. J. Perinatol. 2024, 41, e747–e754. [Google Scholar] [CrossRef]
- Allel, K.; Day, L.; Hamilton, A.; Lin, L.; Furuya-Kanamori, L.; Moore, C.E.; Van Boeckel, T.; Laxminarayan, R.; Yakob, L. Global antimicrobial-resistance drivers: An ecological country-level study at the human-animal interface. Lancet Planet. Health 2023, 7, e291–e303. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Almotiri, A.; AlZeyadi, Z.A. Antimicrobial Resistance and Its Drivers—A Review. Antibiotics 2022, 11, 1362. [Google Scholar] [CrossRef]
- Kiu, R.; Darby, E.M.; Alcon-Giner, C.; Acuna-Gonzalez, A.; Camargo, A.; Lamberte, L.E.; Phillips, S.; Sim, K.; Shaw, A.G.; Clarke, P.; et al. Impact of early life antibiotic and probiotic treatment on gut microbiome and resistome of very-low-birth-weight preterm infants. Nat. Commun. 2025, 16, 7569. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Jia, X.; He, X.; Su, Y.; Zhou, L.; Shen, Y.; Sheng, C.; Liao, A.; Li, C.; Li, Q. Emerging threat of multidrug resistant pathogens from neonatal sepsis. Front. Cell. Infect. Microbiol. 2021, 11, 694093. [Google Scholar] [CrossRef]
- Sourour, W.; Sanchez, V.; Sourour, M.; Burdine, J.; Lien, E.R.; Nguyen, D.; Jain, S.K. The association between prolonged antibiotic use in culture negative infants and length of hospital stay and total hospital costs. Am. J. Perinatol. 2023, 40, 525–531. [Google Scholar] [CrossRef]
- Ting, J.Y.; Synnes, A.; Roberts, A.; Deshpandey, A.C.; Dow, K.; Yang, J.; Lee, K.-S.; Lee, S.K.; Shah, P.S. Canadian Neonatal Network and Canadian Neonatal Follow-Up Network. Association of antibiotic utilization and neurodevelopmental outcomes among extremely low gestational age neonates without proven sepsis or necrotizing enterocolitis. Am. J. Perinatol. 2018, 35, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Neuman, H.; Forsythe, P.; Uzan, A.; Avni, O.; Koren, O. Antibiotics in early life: Dysbiosis and the damage done. FEMS Microbiol. Rev. 2018, 42, 489–499. [Google Scholar] [CrossRef]
- Duong, Q.A.; Pittet, L.F.; Curtis, N.; Zimmermann, P. Antibiotic exposure and adverse long-term health outcomes in children: A systematic review and meta-analysis. J. Infect. 2022, 85, 213–300. [Google Scholar] [CrossRef]
- World Health Organization. Global Antibiotic Resistance Surveillance Report; WHO GLASS; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Schulman, J.; Dimand, R.J.; Lee, H.C.; Duenas, G.V.; Bennett, M.V.; Gould, J.B. Neonatal intensive care unit antibiotic use. Pediatrics 2015, 135, 826–833. [Google Scholar] [CrossRef]
- Garrido, F.; Allegaert, K.; Arribas, C.; Villamor, E.; Raffaeli, G.; Paniagua, M.; Cavallaro, G.; on behalf of European Antibiotics Study Group (EASG). Variations in Antibiotic Use and Sepsis Management in Neonatal Intensive Care Units: A European Survey. Antibiotics 2021, 10, 1046. [Google Scholar] [CrossRef]
- Dantuluri, K.; Griffith, H.; Thurm, C.; Banerjee, R.; Howard, L.M.; Grijalva, C.G. Variability of Antibiotic Use in Neonatal Intensive Care Units in the United States. Open Forum Infect. Dis. 2019, 6, ofz360.1001. [Google Scholar] [CrossRef]
- Balkhy, H.H.; El-Saed, A.; Al-Abri, S.S.; Alshaalan, M.; Hijazi, O.; El-Metwally, A.; Aljohany, S.M.; Al Saif, S. Antimicrobial consumption in three pediatric and neonatal intensive care units in Saudi Arabia: 33-month surveillance study. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 22. [Google Scholar] [CrossRef]
- Alameri, M.A.; Gharaibeh, L.; Alsous, M.; Yaghi, A.; Tanash, A.; Sa’id, S.; Sartawi, H. Antibiotic Prescription Practice and Resistance Patterns of Bacterial Isolates from a Neonatal Intensive Care Unit: A Retrospective Study from Jordan. Antibiotics 2025, 14, 105. [Google Scholar] [CrossRef]
- Dustin, D.F.; Coggins, S.A.; Medoro, A.K. Antibiotic Stewardship in the Neonatal Intensive Care Unit. J. Intensiv. Care Med. 2025, 40, 862–875. [Google Scholar] [CrossRef]
- Dwayne, M.; Ho, M.S.P.; Ting, J.; Shah, P.S. Antimicrobial Stewardship Programs in Neonates: A Meta-Analysis. Pediatrics 2024, 153, e2023065091. [Google Scholar] [CrossRef]
- Karelsdottir, A.Y.; Oskarsdottir, T.; Hoffritz, O.E.; Thorkelsson, T.; Haraldsson, A.; Thors, V. Improved use of antibiotics following implementation of antimicrobial stewardship in a neonatal intensive care unit. Infect. Control. Hosp. Epidemiol. 2024, 45, 1448–1454. [Google Scholar] [CrossRef]
- Notarbartolo, V.; Badiane, B.A.; Insinga, V.; Giuffrè, M. Antimicrobial Stewardship: A Correct Management to Reduce Sepsis in NICU Settings. Antibiotics 2024, 13, 520. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, N.; Srinivasan, L.; Grundmeier, R.W.; Harris, M.C. Demystifying Prolonged Antibiotic Use for Blood Culture-negative Sepsis Evaluations in the Neonatal Intensive Care Unit. Pediatr. Infect. Dis. J. 2024, 43, 284–290. [Google Scholar] [CrossRef]
- Dimopoulou, V.; Klingenberg, C.; Navér, L.; Jónsson, B.; Elfvin, A.; Holmström, E.; Fusch, G.; Bliss, J.M.; Lehnick, D.; Guerina, N.; et al. Antibiotic exposure for culture-negative early-onset sepsis in late-preterm and term newborns: An international study. Pediatr. Res. 2024, 96, 1526–1534. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, Z.; Shan, R.; Zhou, X.; Bai, Y.; Yan, W.; Yang, Y.; Shah, P.S.; Lee, S.K.; Cao, Y. Neonatal Outcomes Following Culture-negative Late-onset Sepsis Among Preterm Infants. Pediatr. Infect. Dis. J. 2020, 39, 232–238. [Google Scholar] [CrossRef]
- Kahn, D.J.; Perkins, B.S.; Barrette, C.E.; Godin, R. Reducing Antibiotic Use in a Level III and Two Level II Neonatal Intensive Care Units Targeting Prescribing Practices for Both Early and Late-onset Sepsis: A Quality Improvement Project. Pediatr. Qual. Saf. 2022, 7, e555. [Google Scholar] [CrossRef]
- Lewis, J.M.; Hodo, L.N.; Duchon, J.; Juliano, C.E. Reducing Antibiotic Use for Culture-Negative Sepsis in a Level IV Neonatal Intensive Care Unit. Pediatrics 2025, 155, e2023065098. [Google Scholar] [CrossRef]
- Sathyan, S.; Pournami, F.; Prithvi, A.K.; Nandakumar, A.; Prabhakar, J.; Jain, N. Optimizing antibiotic use in culture-negative healthcare-associated infection with a ‘stop’ policy: A descriptive analytical study. J. Trop. Pediatr. 2022, 69, fmac101. [Google Scholar] [CrossRef]
- Rajar, P.; Saugstad, O.D.; Berild, D.; Dutta, A.; Greisen, G.; Lausten-Thomsen, U.; Mande, S.S.; Nangia, S.; Petersen, F.C.; Dahle, U.R.; et al. Antibiotic Stewardship in Premature Infants: A Systematic Review. Neonatology 2020, 117, 673–686. [Google Scholar] [CrossRef]
- Flannery, D.D.; Zevallos Barboza, A.; Mukhopadhyay, S.; Gerber, J.S.; McDonough, M.; Shu, D.; Hennessy, S.; Wade, K.C.; Puopolo, K.M. Antibiotic use among extremely low birth-weight infants from 2009 to 2021: A retrospective observational study. Arch. Dis. Child. Fetal Neonatal Ed. 2025, 110, 151–156. [Google Scholar] [CrossRef]
- Chu, M.; Lin, J.; Wang, M.; Liao, Z.; Cao, C.; Hu, M.; Ding, Y.; Liu, Y.; Yue, S. Restrictive Use of Empirical Antibiotics Is Associated with Improved Short Term Outcomes in Very Low Birth Weight Infants: A Single Center, Retrospective Cohort Study from China. Antibiotics 2023, 12, 741. [Google Scholar] [CrossRef]
- Maalouf, F.I.; Saad, T.; Zakhour, R.; Yunis, K. Successful establishment and five-year sustainability of a neonatal-specific antimicrobial stewardship program in a low middle-income country. Front. Pharmacol. 2023, 14, 1076392. [Google Scholar] [CrossRef] [PubMed]
- Assen, K.H.; Paquette, V.; Albert, A.Y.; Shi, G.; Srigley, J.A.; Osiovich, H.; Roberts, A.D.; Ting, J.Y. Effectiveness of a neonatal intensive care unit-specific antimicrobial stewardship program: A ten-year review. Infect. Control Hosp. Epidemiol. 2023, 44, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Kitano, T.; Takagi, K.; Arai, I.; Yasuhara, H.; Ebisu, R.; Ohgitani, A.; Kitagawa, D.; Oka, M.; Masuo, K.; Minowa, H. A simple and feasible antimicrobial stewardship program in a neonatal intensive care unit of a Japanese community hospital. J. Infect. Chemother. 2019, 25, 860–865. [Google Scholar] [CrossRef]
- Ntim, O.K.; Opoku-Asare, B.; Donkor, E.S. A systematic review of antimicrobial stewardship interventions implemented in intensive care units. J. Hosp. Infect. 2025, 162, 272–283. [Google Scholar] [CrossRef] [PubMed]

| Total NICU Admission: 25,532 | |||
|---|---|---|---|
| Antimicrobials Received | No antimicrobials | p value | |
| 11,171 (43.8%) | 14,361 (56.2%) | ||
| Male n (%) | 6423 (57) | 7764 (54) | <0.001 |
| BW in gm, mean (SD) | 2360 (970) | 2817 (686) | <0.001 |
| GA Mean (SD) | 35.1 (4.4) | 37.5 (2.5) | 0.000 |
| Cesarean n (%) | 5681 (50.9) | 6600 (46) | 0.000 |
| AS-1 Median IQR | 8 (6,8) | 8 (7,9) | 0.000 |
| AS-5 Median IQR | 9 (8,9) | 9 (9,10) | 0.000 |
| Hospital Stay Mean (SD) | 13.12 (19.8) | 2.7 (4.8) | 0.000 |
| Mortality (%) | 7.5 | 2.3 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alqayoudhi, A.; Malviya, M.; Murthi, S.; Rasik NV, M.; Al-Wahaibi, A.S.; Al-Habsi, R.; Al-Balushi, S.; Alwardi, T.; Shamsi, A.H.; Raidan, H.B.; et al. Institutional Practices Drive Antibiotic Variability in Neonatal Intensive Care Units: Baseline Evidence to Inform National Stewardship Interventions in Oman. Antibiotics 2026, 15, 91. https://doi.org/10.3390/antibiotics15010091
Alqayoudhi A, Malviya M, Murthi S, Rasik NV M, Al-Wahaibi AS, Al-Habsi R, Al-Balushi S, Alwardi T, Shamsi AH, Raidan HB, et al. Institutional Practices Drive Antibiotic Variability in Neonatal Intensive Care Units: Baseline Evidence to Inform National Stewardship Interventions in Oman. Antibiotics. 2026; 15(1):91. https://doi.org/10.3390/antibiotics15010091
Chicago/Turabian StyleAlqayoudhi, Abdullah, Manoj Malviya, Sathiya Murthi, Mohammed Rasik NV, Adil Said Al-Wahaibi, Raya Al-Habsi, Said Al-Balushi, Talal Alwardi, Agha Hatif Shamsi, Halah Bait Raidan, and et al. 2026. "Institutional Practices Drive Antibiotic Variability in Neonatal Intensive Care Units: Baseline Evidence to Inform National Stewardship Interventions in Oman" Antibiotics 15, no. 1: 91. https://doi.org/10.3390/antibiotics15010091
APA StyleAlqayoudhi, A., Malviya, M., Murthi, S., Rasik NV, M., Al-Wahaibi, A. S., Al-Habsi, R., Al-Balushi, S., Alwardi, T., Shamsi, A. H., Raidan, H. B., Al-Majrafi, A., Kiran, P., Alhaijaa, E. H. A. A., Al Amri, K., Al Abdali, K., Al Reesi, M. S., Al-Shafouri, N., Al-Jabri, A., Shah, S., ... Al-Maani, A. (2026). Institutional Practices Drive Antibiotic Variability in Neonatal Intensive Care Units: Baseline Evidence to Inform National Stewardship Interventions in Oman. Antibiotics, 15(1), 91. https://doi.org/10.3390/antibiotics15010091

