AI-Generated Antibiotic Therapies for Acute Periprosthetic Joint Infections with Implant Retention in Comparison with an Interdisciplinary Team
Abstract
1. Introduction
2. Results
2.1. Cohort Demographics and Microbiological Profiles
2.2. Antibiotic Treatment Protocols
3. Discussion
3.1. Microbiological Profiles
3.2. Therapy Duration and Antibiotic Agents
3.3. Rifampicin in Acute PJI
3.4. Limitations
3.5. Cohort Formation and Dataset
4. Materials and Methods
4.1. Study Design and Objective
4.2. Synthetic Patient Cohort Creation
- Age
- Relevant comorbidities (diabetes mellitus, chronic renal failure, chronic obstructive pulmonary disease (COPD), heart disease, liver disease, neurological comorbidities)
- Allergy to penicillin, fluoroquinolones
- Infectious pathogen
- Pathogen-specific antibiotic susceptibility profile
4.3. Language Model-Based Recommendation Process
- Antibiotic agents
- Route and duration of administrations (IV and PO)
| Age | 45 years old |
| Joint | Hip |
| Gender | Male |
| Comorbidities | COPD, Heart disease |
| Allergies | none |
| Pathogen | MSSA, results of antibiotic susceptibility testing listed in the following table” |
4.4. Expert Panel Comparison
- Two orthopedic surgeons with subspecialty training in septic revision arthroplasty
- Two clinical microbiologists with expertise in musculoskeletal infections (interdisciplinary team, IT)
4.5. Sample Size Justification
4.6. Outcome Measures
- Frequency of recommendations consistent with guideline-based therapy
- Instances of potentially inappropriate recommendations of AI (e.g., due to allergies, resistance, or known contraindications)
4.7. Data Management and Ethics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammat, A.S.; Nelson, R.; Davis, J.S.; Manning, L.; Campbell, D.; Solomon, L.B.; Gnanamanickam, E.S.; Callary, S.A. Estimation of two-year hospital costs of hip and knee periprosthetic joint infection treatments using activity-based costing. Bone Jt. J. 2024, 106-B, 1084–1092. [Google Scholar] [CrossRef]
- Mundi, R.; Pincus, D.; Schemitsch, E.; Ekhtiari, S.; Paterson, J.M.; Chaudhry, H.; Leis, J.A.; Redelmeier, D.A.; Ravi, B. Association Between Periprosthetic Joint Infection and Mortality Following Primary Total Hip Arthroplasty. J. Bone Jt. Surg. 2024, 106, 1546–1552. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Lau, E.; Schmier, J.; Ong, K.L.; Zhao, K.; Parvizi, J. Infection Burden for Hip and Knee Arthroplasty in the United States. J. Arthroplast. 2008, 23, 984–991. [Google Scholar] [CrossRef]
- Zmistowski, B.; Karam, J.A.; Durinka, J.B.; Casper, D.S.; Parvizi, J. Periprosthetic Joint Infection Increases the Risk of One-Year Mortality. J. Bone Jt. Surg. 2013, 95, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Beswick, A.D.; Whitehouse, M.R.; Wylde, V.; Blom, A.W. Debridement, antibiotics and implant retention for periprosthetic joint infections: A systematic review and meta-analysis of treatment outcomes. J. Infect. 2018, 77, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R.; Infectious Diseases Society of America. Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef]
- Otto-Lambertz, C.; Yagdiran, A.; Schmidt-Hellerau, K.; Meyer-Schwickerath, C.; Eysel, P.; Jung, N. Establishment of an interdisciplinary board for bone and joint infections. Infection 2021, 49, 1213–1220. [Google Scholar] [CrossRef]
- Janssen, R.M.E.; Oerlemans, A.J.M.; van der Hoeven, J.G.; Oostdijk, E.A.N.; Derde, L.P.G.; ten Oever, J.; Wertheim, H.F.; Hulscher, M.E.; Schouten, J.A. Decision-making regarding antibiotic therapy duration: An observational study of multidisciplinary meetings in the intensive care unit. J. Crit. Care 2023, 78, 154363. [Google Scholar] [CrossRef]
- Vulpe, D.E.; Anghel, C.; Scheau, C.; Dragosloveanu, S.; Săndulescu, O. Artificial Intelligence and Its Role in Predicting Periprosthetic Joint Infections. Biomedicines 2025, 13, 1855. [Google Scholar] [CrossRef] [PubMed]
- Maritati, M.; De Rito, G.; Zanoli, G.A.; Ning, Y.; Guarino, M.; De Giorgio, R.; Contini, C.; Trampuz, A. Beyond Cultures: The Evolving Role of Molecular Diagnostics, Synovial Biomarkers and Artificial Intelligence in the Diagnosis of Prosthetic Joint Infections. J. Clin. Med. 2025, 14, 6886. [Google Scholar] [CrossRef]
- Parr, J.; Thai-Paquette, V.; Paranjape, P.; McLaren, A.; Deirmengian, C.; Toler, K. Probability Score for the Diagnosis of Periprosthetic Joint Infection: Development and Validation of a Practical Multi-analyte Machine Learning Model. Cureus 2025, 17, e84055. [Google Scholar] [CrossRef]
- Yeo, I.; Klemt, C.; Robinson, M.G.; Esposito, J.G.; Uzosike, A.C.; Kwon, Y.M. The Use of Artificial Neural Networks for the Prediction of Surgical Site Infection Following TKA. J. Knee Surg. 2023, 36, 637–643. [Google Scholar] [CrossRef]
- Hudu, S.A.; Alshrari, A.S.; Abu-Shoura, E.J.I.; Osman, A.; Jimoh, A.O. A Critical Review of the Prospect of Integrating Artificial Intelligence in Infectious Disease Diagnosis and Prognosis. Interdiscip. Perspect. Infect. Dis. 2025, 2025, 6816002. [Google Scholar] [CrossRef]
- Rawson, T.M.; Ahmad, R.; Toumazou, C.; Georgiou, P.; Holmes, A.H. Artificial intelligence can improve decision-making in infection management. Nat. Hum. Behav. 2019, 3, 543–545. [Google Scholar] [CrossRef]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.; Queirós, J.; Soares, D.; Carvalho, A.; Pereira, F.; Santos, C.; Sousa, R.; Abreu, M.A. The Impact of Antibiotic Therapy Options and Multidisciplinary Approach in Prosthetic Joint Infections. Microorganisms 2025, 13, 2241. [Google Scholar] [CrossRef] [PubMed]
- Borgonovo, F.; Matsuo, T.; Petri, F.; Amin Alavi, S.M.; Mazudie Ndjonko, L.C.; Gori, A.; Berbari, E.F. Battle of the Bots: Solving Clinical Cases in Osteoarticular Infections with Large Language Models. Mayo Clin. Proc. Digit. Health 2025, 3, 100230. [Google Scholar] [CrossRef]
- Draschl, A.; Hauer, G.; Fischerauer, S.F.; Kogler, A.; Leitner, L.; Andreou, D.; Leithner, A.; Sadoghi, P. Are ChatGPT’s Free-Text Responses on Periprosthetic Joint Infections of the Hip and Knee Reliable and Useful? J. Clin. Med. 2023, 12, 6655. [Google Scholar] [CrossRef]
- Zellner, A.A.; Watzlawik, N.; Roos, J.; Hischebeth, G.T.R.; Molitor, E.; Franz, A.; Fröschen, F.S. Microbiological Profiles of Patients with Acute Periprosthetic Joint Infection Undergoing Debridement, Antibiotics, Irrigation and Implant Retention (DAIR). Antibiotics 2025, 14, 873. [Google Scholar] [CrossRef] [PubMed]
- Fröschen, F.S.; Randau, T.M.; Franz, A.; Molitor, E.; Hischebeth, G.T.R. Microbiological Profiles of Patients with Periprosthetic Joint Infection of the Hip or Knee. Diagnostics 2022, 12, 1654. [Google Scholar] [CrossRef]
- van Sloten, M.; Gómez-Junyent, J.; Ferry, T.; Rossi, N.; Petersdorf, S.; Lange, J.; Corona, P.; Abreu, M.A.; Borens, O.; Zlatian, O.; et al. Should all patients with a culture-negative periprosthetic joint infection be treated with antibiotics? Bone Jt. J. 2022, 104-B, 183–188. [Google Scholar] [CrossRef]
- Lai, Y.H.; Xu, H.; Li, X.Y.; Zhao, W.X.; Lv, N.; Zhou, Z.K. Outcomes of culture-negative or -positive periprosthetic joint infections: A systematic review and meta-analysis. Jt. Dis. Relat. Surg. 2024, 35, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, A.; Preuss, C.V. Linezolid. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Robert Koch-Institut. ARS. Available online: https://amr.rki.de/Content/Datenbank/ARS/ResistanceOverview.aspx (accessed on 25 November 2025).
- Zellner, A.A.; Watzlawik, N.; Roos, J.; Hischebeth, G.T.R.; Prangenberg, C.; Franz, A.; Fröschen, F.S. Mid-term results after DAIR for patients with acute periprosthetic joint infections of the hip or knee. J. Orthop. Surg. Res. 2025, 20, 676. [Google Scholar] [CrossRef]
- Chaussade, H.; Uçkay, I.; Vuagnat, A.; Druon, J.; Gras, G.; Rosset, P.; Lipsky, B.A.; Bernard, L. Antibiotic therapy duration for prosthetic joint infections treated by Debridement and Implant Retention (DAIR): Similar long-term remission for 6 weeks as compared to 12 weeks. Int. J. Infect. Dis. 2017, 63, 37–42. [Google Scholar] [CrossRef]
- Miller, R.; Higuera, C.A.; Wu, J.; Klika, A.; Babic, M.; Piuzzi, N.S. Periprosthetic Joint Infection. JBJS Rev. 2020, 8, e19.00224. [Google Scholar] [CrossRef]
- Bernard, L.; Arvieux, C.; Brunschweiler, B.; Touchais, S.; Ansart, S.; Bru, J.P.; Oziol, E.; Boeri, C.; Gras, G.; Druon, J.; et al. Antibiotic Therapy for 6 or 12 Weeks for Prosthetic Joint Infection. N. Engl. J. Med. 2021, 384, 1991–2001. [Google Scholar] [CrossRef]
- Lora-Tamayo, J.; Mancheño-Losa, M.; Meléndez-Carmona, M.Á.; Hernández-Jiménez, P.; Benito, N.; Murillo, O. Appropriate Duration of Antimicrobial Treatment for Prosthetic Joint Infections: A Narrative Review. Antibiotics 2024, 13, 293. [Google Scholar] [CrossRef]
- Sigmund, I.K.; Ferry, T.; Sousa, R.; Soriano, A.; Metsemakers, W.J.; Clauss, M.; Trebse, R.; Wouthuyzen-Bakker, M. Debridement, antimicrobial therapy, and implant retention (DAIR) as curative strategy for acute periprosthetic hip and knee infections: A position paper of the European Bone & Joint Infection Society (EBJIS). J. Bone Jt. Infect. 2025, 10, 101–138. [Google Scholar] [CrossRef]
- Kruse, C.C.; Ekhtiari, S.; Oral, I.; Selznick, A.; Mundi, R.; Chaudhry, H.; Pincus, D.; Wolfstadt, J.; Kandel, C.E. The Use of Rifampin in Total Joint Arthroplasty: A Systematic Review and Meta-Analysis of Comparative Studies. J. Arthroplast. 2022, 37, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Beldman, M.; Löwik, C.; Soriano, A.; Albiach, L.; Zijlstra, W.P.; Knobben, B.A.S.; Jutte, P.; Sousa, R.; Carvalho, A.; Goswami, K.; et al. Correction to: If, When, and How to Use Rifampin in Acute Staphylococcal Periprosthetic Joint Infections, a Multicentre Observational Study. Clin. Infect. Dis. 2022, 74, 1890. [Google Scholar] [CrossRef] [PubMed]
- Darwich, A.; Dally, F.J.; Bdeir, M.; Kehr, K.; Miethke, T.; Hetjens, S.; Gravius, S.; Assaf, E.; Mohs, E. Delayed Rifampin Administration in the Antibiotic Treatment of Periprosthetic Joint Infections Significantly Reduces the Emergence of Rifampin Resistance. Antibiotics 2021, 10, 1139. [Google Scholar] [CrossRef]
- Lora-Tamayo, J.; Murillo, O.; Iribarren, J.A.; Soriano, A.; Sánchez-Somolinos, M.; Baraia-Etxaburu, J.M.; Rico, A.; Palomino, J.; Rodríguez-Pardo, D.; Horcajada, J.P.; et al. A Large Multicenter Study of Methicillin–Susceptible and Methicillin–Resistant Staphylococcus aureus Prosthetic Joint Infections Managed With Implant Retention. Clin. Infect. Dis. 2013, 56, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, A.R.; Cicchetti, D.V. High agreement but low Kappa: I. the problems of two paradoxes. J. Clin. Epidemiol. 1990, 43, 543–549. [Google Scholar] [CrossRef]
- Buller, L.T.; Sabry, F.Y.; Easton, R.W.; Klika, A.K.; Barsoum, W.K. The Preoperative Prediction of Success Following Irrigation and Debridement With Polyethylene Exchange for Hip and Knee Prosthetic Joint Infections. J. Arthroplast. 2012, 27, 857–864.e4. [Google Scholar] [CrossRef]
- Choong, A.L.; Shadbolt, C.; Choong, E.; Spelman, T.; Muñoz-Mahamud, E.; Lora-Tamayo, J.; Kim, K.; Wouthuyzen-Bakker, M.; Spangehl, M.; Chayakulkeeree, M.; et al. The Impact of Sex on the Outcomes of Prosthetic Joint Infection Treatment with Debridement, Antibiotics and Implant Retention: A Systematic Review and Individual Patient Data Meta-analysis. JAAOS Glob. Res. Rev. 2022, 6, e22.00102. [Google Scholar] [CrossRef]
- Luintel, A.; Healy, J.; Blank, M.; Luintel, A.; Dryden, S.; Das, A.; Cooke, G. The global prevalence of reported penicillin allergy: A systematic review and meta-analysis. J. Infect. 2025, 90, 106429. [Google Scholar] [CrossRef] [PubMed]
- Wall, G.C.; Taylor, M.J.; Smith, H.L. Prevalence and characteristics of hospital inpatients with reported fluoroquinolone allergy. Int. J. Clin. Pharm. 2018, 40, 890–894. [Google Scholar] [CrossRef]
- Cobo, J.; Miguel, L.G.S.; Euba, G.; Rodríguez, D.; García-Lechuz, J.M.; Riera, M.; Falgueras, L.; Palomino, J.; Benito, N.; Toro, D.; et al. Early prosthetic joint infection: Outcomes with debridement and implant retention followed by antibiotic therapy. Clin. Microbiol. Infect. 2011, 17, 1632–1637. [Google Scholar] [CrossRef] [PubMed]
| Demographic Data | Hip | Knee | Total |
|---|---|---|---|
| Total Number of Patients | 43 | 57 | 100 |
| male | 23 | 25 | 48 |
| female | 20 | 32 | 52 |
| Age, mean ± SD, (Range) | 66.81 (±9.53) | 68.16 (±8.85) | 67.58 (±9.13) |
| Renal insufficiency | 3 | 5 | 8 |
| Diabetes | 9 | 12 | 21 |
| Neurological diseases | 6 | 10 | 16 |
| Liver disease | 1 | 2 | 3 |
| Heart disease | 10 | 9 | 19 |
| COPD | 5 | 6 | 11 |
| Penicillin allergy | 5 | 4 | 9 |
| Fluoroquinolone allergy | 1 | 1 | 2 |
| Pathogen | n | Percentage % |
|---|---|---|
| Coagulase negative Staphyloccoci | 36 | 27.69 |
| Staphylococcus aureus | 36 | 27.69 |
| Streptococci | 20 | 15.38 |
| Escherichia coli | 9 | 6.92 |
| Proteus spp. | 7 | 5.38 |
| Enterobacter spp. | 7 | 5.38 |
| Enterococcus spp. | 6 | 4.62 |
| Pseuodomonas aeruginosa | 5 | 3.86 |
| Cutibacterium acnes | 2 | 1.54 |
| Candida albicans | 2 | 1.54 |
| Agent | LLM Quantity | IT Quantity |
|---|---|---|
| Vancomycin | 48 | 32 |
| Flucloxacillin | 10 | 2 |
| Cefazolin | 10 | 21 |
| Penicillin G | 9 | 17 |
| Ampicillin/Sulbactam | 1 | 12 |
| Ceftriaxon | 13 | 0 |
| Meropenem | 8 | 6 |
| Piperacillin/Tazobactam | 3 | 6 |
| Daptomycin | 2 | 5 |
| Ampicillin | 4 | 0 |
| Cefepim | 4 | 0 |
| Gentamicin | 3 | 0 |
| Caspofungin | 2 | 2 |
| Linezolid | 2 | 0 |
| Colistin | 1 | 0 |
| Ciprofloxacin | 1 | 0 |
| Ceftazidime | 1 | 0 |
| Aztreonam | 1 | 0 |
| Total | 123 | 103 |
| Agent | LLM Quantity | IT Quantity |
|---|---|---|
| Levofloxacin | 21 | 48 |
| Linezolid | 39 | 14 |
| Amoxicillin | 18 | 22 |
| Ciprofloxacin | 16 | 17 |
| Cotrimoxazol | 8 | 13 |
| Clindamycin | 4 | 1 |
| Fluconazol | 2 | 2 |
| Total | 108 | 117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zellner, A.A.; Tuburu, T.T.; Franz, A.; Roos, J.; Fröschen, F.S.; Hischebeth, G.T.R. AI-Generated Antibiotic Therapies for Acute Periprosthetic Joint Infections with Implant Retention in Comparison with an Interdisciplinary Team. Antibiotics 2026, 15, 25. https://doi.org/10.3390/antibiotics15010025
Zellner AA, Tuburu TT, Franz A, Roos J, Fröschen FS, Hischebeth GTR. AI-Generated Antibiotic Therapies for Acute Periprosthetic Joint Infections with Implant Retention in Comparison with an Interdisciplinary Team. Antibiotics. 2026; 15(1):25. https://doi.org/10.3390/antibiotics15010025
Chicago/Turabian StyleZellner, Alberto Alfieri, Tamaradoubra Tippa Tuburu, Alexander Franz, Jonas Roos, Frank Sebastian Fröschen, and Gunnar Thorben Rembert Hischebeth. 2026. "AI-Generated Antibiotic Therapies for Acute Periprosthetic Joint Infections with Implant Retention in Comparison with an Interdisciplinary Team" Antibiotics 15, no. 1: 25. https://doi.org/10.3390/antibiotics15010025
APA StyleZellner, A. A., Tuburu, T. T., Franz, A., Roos, J., Fröschen, F. S., & Hischebeth, G. T. R. (2026). AI-Generated Antibiotic Therapies for Acute Periprosthetic Joint Infections with Implant Retention in Comparison with an Interdisciplinary Team. Antibiotics, 15(1), 25. https://doi.org/10.3390/antibiotics15010025

