Antimicrobial Resistance in Bacterial Strains of Agricultural Interest: Predictions Based on Genomic Data
Abstract
1. Introduction
2. Results
2.1. Collection of Bacterial Strains and Antibiotics Selected for the Study
2.2. Determination of Antimicrobial Susceptibility by the Disk Diffusion Method on Agar
2.3. Selection of Six Strains for Further Studies
2.4. Determination of Minimal Inhibitory Concentration
2.5. Whole Genome Sequences and Main Features of the Assemblies
2.6. Identification of the Selected Strains
2.7. Mining Antibiotic Resistance Genes in the WGS
3. Discussion
Limitations of the Work and Future Perspectives
4. Materials and Methods
4.1. Determination of Antimicrobial Susceptibility by the Disk Diffusion Method on Agar
4.2. Determination of Minimal Inhibitory Concentration by the Broth Microdilution Method
4.3. Determination of the Minimal Inhibitory Concentration for Fosfomycin
4.4. Isolation of Genomic DNA and Whole Genome Sequencing (WGS)
4.5. Identification of the Selected Strains
4.6. Mining Antibiotic Resistance Determinants in the Genomes
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABC | ATP-Binding Cassette Transporters |
| AMR | Antimicrobial Resistance |
| ARG | Antibiotic Resistance Genes |
| CARD | Comprehensive Antibiotic Resistance Database |
| CLSI | Clinical Laboratory Standards Institute |
| dDDH | Digital DNA–DNA Hybridization |
| EUCAST | European Committee for Antimicrobial Susceptibility Testing |
| HGT | Horizontal Gene Transfer |
| MDR | Multidrug Resistance |
| MFS | Major Facilitator Superfamily of Transporters |
| MGE | Mobile Genetic Elements |
| PATRIC | Pathosystems Resource Integration Center |
| PGPB | Plant Growth Promoting Bacteria |
| RND | Resistance–Nodulation–Cell Division Efflux Pumps Family |
| WGS | Whole Genome Sequencing |
References
- Ding, D.; Wang, B.; Zhang, X.; Zhang, J.; Zhang, H.; Liu, X.; Gao, Z.; Yu, Z. The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicol. Environ. Saf. 2023, 254, 114734. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. The Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Gaurav, A.; Bakht, P.; Saini, M.; Pandey, S.; Pathania, R. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology 2023, 169, 001333. [Google Scholar] [CrossRef]
- Kaderabkova, N.; Bharathwaj, M.; Furniss, R.C.D.; Gonzalez, D.; Palmer, T.; Mavridou, D.A. The biogenesis of β-lactamase enzymes. Microbiology 2022, 168, 001217. [Google Scholar] [CrossRef]
- Eriksen, H.B.; Fuursted, K.; Jensen, A.; Jensen, C.S.; Nielsen, X.; Christensen, J.J.; Shewmaker, P.; Rebelo, A.R.; Aarestrup, F.M.; Schønning, K.; et al. Predicting β-lactam susceptibility from the genome of Streptococcus pneumoniae and other mitis group streptococci. Front. Microbiol. 2023, 14, 1120023. [Google Scholar] [CrossRef]
- Quon, H.; Ramirez, L.; Bagwell, B.; Moralez, J.; Sheppard, R.J.; Lopatkin, A.J.; Hamilton, K.A. Quantifying conjugation rates in clinical and environmental matrices: A systematic review to inform risk assessment. Front. Microbiomes 2025, 3, 1490240. [Google Scholar] [CrossRef]
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Antimicrobial Resistance. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 15 December 2025).
- Patel, M.; Islam, S.; Glick, B.R.; Vimal, S.R.; Bhor, S.A.; Bernardi, M.; Johora, F.T.; Patel, A.; de los Santos Villalobos, S. Elaborating the multifarious role of PGPB for sustainable food security under changing climate conditions. Microbiol. Res. 2024, 289, 127895. [Google Scholar] [CrossRef]
- Fanai, A.; Bohia, B.; Lalremruati, F.; Lalhriatpuii, N.; Lalrokimi; Lalmuanpuii, R.; Singh, P.K.; Zothanpuia. Plant growth promoting bacteria (PGPB)-induced plant adaptations to stresses: An updated review. PeerJ 2024, 12, e17882. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Pool, J.A.; Calderón-Pérez, B.; Ruiz-Medrano, R.; Ortiz-Castro, R.; Xoconostle-Cazares, B. Bacillus Strains as Effective Biocontrol Agents Against Phytopathogenic Bacteria and Promoters of Plant Growth. Microb. Ecol. 2024, 87, 76. [Google Scholar] [CrossRef]
- Fukami, J.; Cerezini, P.; Hungria, M. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express 2018, 8, 73. [Google Scholar] [CrossRef]
- Cao, M.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environ. Res. 2023, 217, 114924. [Google Scholar] [CrossRef]
- Mahdi, I.; Fahsi, N.; Hijri, M.; Sobeh, M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front. Microbiol. 2022, 13, 999988. [Google Scholar] [CrossRef] [PubMed]
- Andriyanov, P.A.; Kashina, D.D.; Menshikova, A.N. Genomic analysis of multidrug-resistant Delftia tsuruhatensis isolated from raw bovine milk. Front. Microbiol. 2024, 14, 1321122. [Google Scholar] [CrossRef]
- Zhi, Q.; Zheng, B.; Teng, K.; Xiao, Y.; Zhou, X.; Tang, Q.; Li, J.; Yin, H.; Meng, D.; Liu, T. Metagenomic approach reveals the role of bioagents in the environmental dissemination risk of rhizosphere soil antibiotic resistance genes pollution. Environ. Res. 2024, 263, 120090. [Google Scholar] [CrossRef]
- Antonopoulos, D.A.; Assaf, R.; Aziz, R.K.; Brettin, T.; Bun, C.; Conrad, N.; Davis, J.J.; Dietrich, E.M.; Disz, T.; Gerdes, S.; et al. PATRIC as a unique resource for studying antimicrobial resistance. Brief. Bioinform. 2019, 20, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef]
- Flores-Duarte, N.J.; Pajuelo, E.; Mateos-Naranjo, E.; Navarro-Torre, S.; Rodríguez-Llorente, I.D.; Redondo-Gómez, S.; Carrasco López, J.A. A Culturomics-Based Bacterial Synthetic Community for Improving Resilience towards Arsenic and Heavy Metals in the Nutraceutical Plant Mesembryanthemum crystallinum. Int. J. Mol. Sci. 2023, 24, 7003. [Google Scholar] [CrossRef]
- Pajuelo, E.; Flores-Duarte, N.J.; Navarro-Torre, S.; Rodríguez-Llorente, I.D.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Carrasco López, J.A. Culturomics and Circular Agronomy: Two Sides of the Same Coin for the Design of a Tailored Biofertilizer for the Semi-Halophyte Mesembryanthemum crystallinum. Plants 2023, 12, 2545. [Google Scholar] [CrossRef]
- Flores-Duarte, N.J.; Caballero-Delgado, S.; Pajuelo, E.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Navarro-Torre, S.; Rodríguez-Llorente, I.D. Enhanced legume growth and adaptation to degraded estuarine soils using Pseudomonas sp. nodule endophytes. Front. Microbiol. 2022, 13, 1005458. [Google Scholar] [CrossRef] [PubMed]
- Flores-Duarte, N.J.; Pérez-Pérez, J.; Navarro-Torre, S.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Pajuelo, E.; Rodríguez-Llorente, I.D. Improved Medicago sativa Nodulation under Stress Assisted by Variovorax sp. Endophytes. Plants 2022, 11, 1091. [Google Scholar] [CrossRef] [PubMed]
- Pajuelo, E.; Arjona, S.; Rodríguez-Llorente, I.D.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Merchán, F.; Navarro-Torre, S. Coastal Ecosystems as Sources of Biofertilizers in Agriculture: From Genomics to Application in an Urban Orchard. Front. Mar. Sci. 2021, 8, 685076. [Google Scholar] [CrossRef]
- ANSES. Guide Relatif à L’evaluation des Dossiers de Demandes D’autorisation de Mise sur le Marché et de Permis des Matières Fertilisantes, des Adjuvants Pour Matières Fertilisantes et des Supports de Culture. Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement Et Du Travail. 2020. Available online: https://www.anses.fr/fr/system/files/Guide-evaluation-MFSC_2020-07.pdf (accessed on 15 November 2025).
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. 2024. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_15.0_Breakpoint_Tables.pdf (accessed on 15 November 2025).
- EUCAST. EUCAST Guidance on When There Are No Breakpoints in Breakpoint Tables. 2024. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_documents/When_there_are_no_breakpoints_2024-09-03.pdf (accessed on 15 November 2025).
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Andreopoulos, W.B.; Geller, A.M.; Lucke, M.; Balewski, J.; Clum, A.; Ivanova, N.N.; Levy, A. Deeplasmid: Deep learning accurately separates plasmids from bacterial chromosomes. Nucleic Acids Res. 2022, 50, e17. [Google Scholar] [CrossRef]
- Grissa, I.; Vergnaud, G.; Pourcel, C. CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007, 35, W52–W57. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, Y.; Rong, C.; Chen, S.; Liu, Y.; Wang, S.; Xu, F. Pantoea pleuroti sp. nov., Isolated from the Fruiting Bodies of Pleurotus eryngii. Curr. Microbiol. 2016, 72, 207–212. [Google Scholar] [CrossRef]
- Riesco, R.; Trujillo, M.E. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2024, 74, 006300. [Google Scholar] [CrossRef]
- Falagas, M.E.; Athanasaki, F.; Voulgaris, G.L.; Triarides, N.A.; Vardakas, K.Z. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int. J. Antimicrob. Agents 2019, 53, 22–28. [Google Scholar] [CrossRef]
- Mattioni Marchetti, V.; Hrabak, J.; Bitar, I. Fosfomycin resistance mechanisms in Enterobacterales: An increasing threat. Front. Cell. Infect. Microbiol. 2023, 13, 1178547. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Bernat, B.A.; Wang, Z.; Armstrong, R.N.; Helmann, J.D. FosB, a cysteine-dependent Fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J. Bacteriol. 2001, 183, 2380–2383. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, J.; Li, W.; Wang, M.; Fan, T.; Bu, D.; Ye, S. Structural basis for antibiotic resistance by chloramphenicol acetyltransferase type A in Staphylococcus aureus. Sci. Rep. 2025, 15, 37020. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.T.; Shi, K.R.; Ji, J.S.; Yang, Q.; Du, X.X.; Wei, Z.Q.; Yu, Y.-S. Fosfomycin resistance among vancomycin-resistant enterococci owing to transfer of a plasmid harbouring the fosB gene. Int. J. Antimicrob. Agents 2014, 43, 361–365. [Google Scholar] [CrossRef]
- Jang, S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: Toward understanding its operation mechanism. BMB Rep. 2023, 56, 326–334. [Google Scholar] [CrossRef]
- Nagakubo, S.; Nishino, K.; Hirata, T.; Yamaguchi, A. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J. Bacteriol. 2002, 184, 4161–4167. [Google Scholar] [CrossRef]
- Lambert, O.; Benabdelhak, H.; Chami, M.; Jouan, L.; Nouaille, E.; Ducruix, A.; Brisson, A. Trimeric structure of OprN and OprM efflux proteins from Pseudomonas aeruginosa, by 2D electron crystallography. J. Struct. Biol. 2005, 150, 50–57. [Google Scholar] [CrossRef]
- Heng, J.; Zhao, Y.; Liu, M.; Liu, Y.; Fan, J.; Wang, X.; Zhao, Y.; Zhang, X.C. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res. 2015, 25, 1060–1073. [Google Scholar] [CrossRef]
- Yin, Y.; He, X.; Szewczyk, P.; Nguyen, T.; Chang, G. Structure of the multidrug transporter EmrD from Escherichia coli. Science 2006, 312, 741–744, Erratum in Science 2007, 317, 1682. [Google Scholar] [CrossRef]
- Greene, N.P.; Kaplan, E.; Crow, A.; Koronakis, V. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective. Front. Microbiol. 2018, 9, 950, Erratum in Front. Microbiol. 2018, 9, 2318. https://doi.org/10.3389/fmicb.2018.02318. [Google Scholar] [CrossRef]
- Randall, L.P.; Woodward, M.J. The multiple antibiotic resistance (mar) locus and its significance. Res. Vet. Sci. 2002, 72, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Beggs, G.A.; Brennan, R.G.; Arshad, M. MarR family proteins are important regulators of clinically relevant antibiotic resistance. Protein Sci. 2020, 29, 647–653. [Google Scholar] [CrossRef]
- Rodgers, D.; Le, C.; Pimentel, C.; Subils, T.; Escalante, J.; Nishimura, B.; García Vescovi, E.; Sieira, R.; Bonomo, R.A.; Tolmasky, M.E.; et al. Histone-like nucleoid-structuring protein (H-NS) regulatory role in antibiotic resistance in Acinetobacter baumannii. Sci. Rep. 2021, 11, 18414. [Google Scholar] [CrossRef]
- Kang, Y.; Shen, M.; Xia, D.; Ye, K.; Zhao, Q.; Hu, J. Caution of intensified spread of antibiotic resistance genes by inadvertent introduction of beneficial bacteria into soil. Acta Agric. Scand. Sect. B 2017, 67, 576–582. [Google Scholar] [CrossRef]
- Ramakrishna, W.; Yadav, R.; Li, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil. Ecol. 2019, 18, 10–18. [Google Scholar] [CrossRef]
- Liu, H.Y.; Prentice, E.L.; Webber, M.A. Mechanisms of antimicrobial resistance in biofilms. NPJ Antimicrob. Resist. 2024, 2, 27. [Google Scholar] [CrossRef]
- Kakoullis, L.; Papachristodoulou, E.; Chra, P.; Panos, G. Mechanisms of Antibiotic Resistance in Important Gram-Positive and Gram-Negative Pathogens and Novel Antibiotic Solutions. Antibiotics 2021, 10, 415. [Google Scholar] [CrossRef]
- González-Reguero, D.; Robas-Mora, M.; Fernández-Pastrana, V.M.; Probanza-Lobo, A.; Jiménez-Gómez, P.A. Reduced Antibiotic Resistance in the Rhizosphere of Lupinus albus in Mercury-Contaminated Soil Mediated by the Addition of PGPB. Biology 2023, 12, 801. [Google Scholar] [CrossRef]
- Robas, M.; Presa, J.; Arranz-Herrero, J.; Yildiz, S.; Rius-Rocabert, S.; Llinares-Pinel, F.; Probanza, A.; Schmolke, M.; Jiménez, P.A.; Nistal-Villan, E. Influenza A virus infection alters the resistance profile of gut microbiota to clinically relevant antibiotics. Microbiol. Spectr. 2024, 12, e03635-22. [Google Scholar] [CrossRef]
- Fernández-Pastrana, V.M.; González-Reguero, D.; Robas-Mora, M.; Penalba-Iglesias, D.; Alonso-Torreiro, P.; Probanza, A.; Jiménez-Gómez, P.A. Biotechnological Test of Plant Growth-Promoting Bacteria Strains for Synthesis of Valorized Wastewater as Biofertilizer for Silvicultural Production of Holm Oak (Quercus ilex L.). Plants 2025, 14, 2654. [Google Scholar] [CrossRef]
- Olsen, N.S.; Riber, L. Metagenomics as a Transformative Tool for Antibiotic Resistance Surveillance: Highlighting the Impact of Mobile Genetic Elements with a Focus on the Complex Role of Phages. Antibiotics 2025, 14, 296. [Google Scholar] [CrossRef]
- Kajić, S.; Vignjević, S.; Sikora, S.; Rajnović, I. Isolation and characterization of plant growth promoting bacteria for potential bioremediation. Agric. For. 2023, 69, 83–92. [Google Scholar] [CrossRef]
- Taoufiq, K.; Aberchane, L.; Amri, O.; Oufdou, K.; El Biari, K.; Talbi, A.; Fghire, R.; Ouachtak, H.; Faghire, M. Antibiotics Resistance and PGPR Traits of Endophytic Bacteria Isolated in Arid Region of Morocco. Int. J. Plant Biol. 2024, 15, 1063–1076. [Google Scholar] [CrossRef]
- Zakiryaeva, S.I.; Shakirov, Z.S.; Khamidova, K.M.; Karimov, H.K.; Jamalova, O.U.; Elova, N.A.; Rakhmanov, B.K. Antibiotic sensitivity of phosphate-mobilizing rhizobacteria of wheat rhizosphere. Plant Sci. Today 2025, 12, 1–6. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Kumavath, R.; Gupta, P.; Tatta, E.R.; Mohan, M.S.; Salim, S.A.; Busi, S. Unraveling the role of mobile genetic elements in antibiotic resistance transmission and defense strategies in bacteria. Front. Syst. Biol. 2025, 5, 1557413. [Google Scholar] [CrossRef] [PubMed]
- Zarean, M.; Dave, S.H.; Brar, S.K.; Kwong, R.W.M. Environmental drivers of antibiotic resistance: Synergistic effects of climate change, co-pollutants, and microplastics. J. Hazard. Mater. Adv. 2025, 19, 100768. [Google Scholar] [CrossRef]
- Pajuelo, E.; Rodríguez-Llorente, I.D.; Redondo-Gómez, S.; Mateos-Naranjo, E. A “SWOT” analysis of the transfer of knowledge from the lab to the field: Regulatory issues, Developmental Constraints, and Opportunities. In Decoding Plant-Environment-Microbiome Interactions in Stress-Resilient Agriculture; Rizvi, A., Khan, M.S., Pajuelo, E., Oufdou, K., Ahmad, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2026; Chapter 20; in press. [Google Scholar]
- CLSI Standard M02Performance Standards for Antimicrobial Disk Susceptibility Tests, 14th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024.
- CLSI M07; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018.
- Smith, E.C.; Brigman, H.V.; Anderson, J.C.; Emery, C.L.; Bias, T.E.; Bergen, P.J.; Landersdorfer, C.B.; Hirsch, E.B. Performance of Four Fosfomycin Susceptibility Testing Methods against an International Collection of Clinical Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 2020, 58, e01121-20. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.; Dvorkin, M.; Kulikov, A.; Lesin, V.; Nikolenko, S.; Pham, S.; Prjibelski, A.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]



| Gram-Negatives | ||
| Strain | PGP properties and extracellular activities | Reference |
| H4 | Aux, PS, KS, Sid, N2-fix, Amy, Prot | [22] |
| H17 | KS, Sid, Aux, Bio, N2-fix, Prot | [22] |
| MH3 | KS, Bio, Aux, Amy, Cel, Prot | [22] |
| N1 | Sid, ACC, Bio, N2-fix | [23] |
| N3 | PS, Sid, Aux, Bio, N2-fix, Cel, Chit | [23] |
| N6 | Sid, Bio, N2-fix | [23] |
| N11 | PS, Sid, Aux, Bio, N2-fix, Prot | [23] |
| N23 | PS, Sid, Aux, Bio, N2-fix, Cel | [23] |
| N30 | PS, Sid, Aux, ACC, N2-fix, Prot | [23] |
| S3 | Bio, N2-fix, Aux, PS, KS, Sid, Cel | [21] |
| Gram-Positives | ||
| Strain | PGP properties and extracellular activities | Reference |
| MS4 | KS, Aux, N2-fix, Bio, Amy, Prot | [23] |
| MHA1 | KS, Sid, Aux, N2-fix, Bio, Amy, Prot | [23] |
| MH6 | Sid, Aux, N2-fix, Amy, Prot | [23] |
| MH9B | Aux, Sid, Cel, Prot | [23] |
| MR4 | Bio, N2-fix, Sid, Aux, Prot, Amy, Pect, DNAase | [23] |
| MS5 | KS, Sid, Aux, N2-fix, Amy, Prot | [21] |
| N14 | PS, Sid, Aux, Bio, N2-fix, Prot | [23] |
| N18 | PS, Sid, Aux, Bio, N2-fix, Prot, Pect, Cel | [23] |
| N25 | PS, Sid, Aux, Bio, N2-fix, Prot, Cel, Chit | [23] |
| N32 | PS, Sid, Aux, N2-fix, Prot, Pect, Cel | [23] |
| Gram-Positives | Gram-Negatives | ||
|---|---|---|---|
| Antibiotic | Amount on the Disk (micrograms) | Antibiotic | Amount on the Disk (micrograms) |
| Ampicillin | 10 | Ampicillin | 10 |
| Clindamycin | 2 | Ciprofloxacin | 5 |
| Chloramphenicol | 30 | Colistin sulphate | 10 |
| Erythromycin | 15 | Streptomycin | 25 |
| Streptomycin | 25 | Fosfomycin | 50 |
| Gentamicin | 10 | Gentamicin | 10 |
| Kanamycin | 30 | Kanamycin | 30 |
| Tetracycline | 30 | Tetracycline | 30 |
| Vancomycin | 30 | ||
| Strain | Amp | Cipro | Colis | Fosfo | Genta | Kana | Strepto | Tetra |
|---|---|---|---|---|---|---|---|---|
| H4 | 0 | 23 | 13 | 9 | 18 | 22 | 13 | 0 |
| H17 | 0 | 0 | 0 | 19 | 21 | 19 | 0 | 17 |
| MH3 | 9 | 24 | 11 | 12 | 26 | 27 | 20 | 11 |
| N1 | 0 | 8 | 16 | 0 | 19 | 13 | 13 | 11 |
| N3 | 9 | 30 | 0 | 37 | 19 | 11 | 18 | 14 |
| N6 | 0 | 0 | 14 | 0 | 16 | 20 | 11 | 15 |
| N11 | 0 | 20 | 12 | 16 | 19 | 19 | 15 | 10 |
| N23 | 11 | 32 | 14 | 22 | 20 | 21 | 19 | 18 |
| N30 | 12 | 31 | 10 | 23 | 21 | 0 | 21 | 0 |
| S3 | 11 | 31 | 13 | 26 | 22 | 25 | 22 | 18 |
| Strain | Amp | Chloram | Clinda | Erythro | Genta | Kana | Strepto | Tetra | Vanco |
|---|---|---|---|---|---|---|---|---|---|
| MHA1 | 0 | 0 | 0 | 0 | 17 | 17 | 9 | 8 | 0 |
| MH6 | 15 | 29 | 14 | 39 | 29 | 33 | 26 | 27 | 7 |
| MH9B | 14 | 21 | 31 | 28 | 30 | 28 | 20 | 12 | 15 |
| MR4 | 16 | 29 | 29 | 30 | 27 | 30 | 19 | 15 | 16 |
| MS4 | 13 | 26 | 17 | 19 | 26 | 30 | 25 | 24 | 17 |
| MS5 | 17 | 17 | 14 | 34 | 28 | 32 | 27 | 25 | 17 |
| N14 | 14 | 27 | 13 | 29 | 25 | 29 | 23 | 16 | 24 |
| N18 | 14 | 27 | 19 | 14 | 20 | 20 | 20 | 18 | 0 |
| N25 | 0 | 17 | 6 | 12 | 19 | 14 | 16 | 14 | 8 |
| N32 | 10 | 18 | 11 | 19 | 20 | 22 | 18 | 15 | 0 |
| Strain | Amp (mg L−1) | Clinda (mg L−1) | Genta (mg L−1) | Kana (mg L−1) | Strepto (mg L−1) | Tetra (mg L−1) |
|---|---|---|---|---|---|---|
| MHA1 | >512 (R) | >512 (R) | 128 | 128 | >512 | 256 (R) |
| MS4 | >512 (R) | <0.5 (S) | 8 | 4 | 8 | <0.5 (S) |
| N25 | >512 (R) | >512 (R) | 16 | 8 | 32 | 2 (S) |
| Breakpoints for Bacillus spp. (except B. anthracis) [27] | n.d. | 1 | n.d. | n.d. | n.d. | n.d. |
| Breakpoints for Gram-positives when there are no other data [28] | 0.5 | 0.5 | n.d. | n.d. | n.d. | 2 |
| Strain | Amp (mg L−1) | Cipro (mg L−1) | Fosfo (mg L−1) | Genta (mg L−1) | Kana (mg L−1) | Strepto (mg L−1) | Tetra (mg L−1) |
|---|---|---|---|---|---|---|---|
| H17 | 16 (R) | 128 (R) | 8 (S) | 8 (R) | 64 (S) | 64 | 4 (R) |
| N6 | >512 (R) | 2 (R) | >512 (R) | 64 (R) | 64 (S) | 64 | 4 (R) |
| S3 | 128 (R) | 1 (R) | 4 (S) | 4 (S) | 16 (S) | 32 | 1 (S) |
| Breakpoints for Pseudomonas spp. | n.d. | 0.5 | 64 | 4 | 64 | n.d. | 2 |
| Breakpoints for Enterobacterales [27] | 8 | 0.25 | 8 | 2 | n.d. | n.d. | 4 |
| Breakpoints for Gram-negatives when there are no other data [28] | 8 | 0.25 | n.d. | n.d. | n.d. | n.d. | 2 |
| Genomic Features | MHA1 | MS4 | N25 | H17 | N6 | S3 |
|---|---|---|---|---|---|---|
| Total length (bp) a | 5,891,127 | 6,043,838 | 5,805,119 | 4,949,670 | 6,641,484 | 5,276,853 |
| Number of contigs (≧100 bp) a | 200 | 219 | 92 | 74 | 72 | 170 |
| Largest contig (bp) a | 1,407,233 | 1,236,212 | 842,001 | 1,093,983 | 1,263,707 | 1,548,608 |
| N50 (bp) a | 1,005,957 | 1,008,741 | 330,999 | 404,426 | 412,829 | 414,608 |
| L50 a | 3 | 3 | 5 | 3 | 5 | 3 |
| N75 (bp) a | 227,051 | 228,602 | 211,237 | 288,132 | 235,369 | 229,884 |
| L75 a | 6 | 6 | 11 | 7 | 10 | 8 |
| DNA G + C content (mol%) a | 37.46 | 37.44 | 34.79 | 56.41 | 64.25 | 54.40 |
| Ns per 100 kb a | 0 | 0 | 0 | 0 | 0 | 0 |
| Mean coverage | 74.97× | 73.40× | 78.81× | 62.05× | 47.05× | 41.72× |
| Number of CDS b | 5958 | 6185 | 5729 | 4577 | 5963 | 4955 |
| RNA genes b | 182 | 162 | 127 | 97 | 65 | 88 |
| rRNA b | 27 | 27 | 19 | 14 | 4 | 13 |
| tRNA b | 154 | 134 | 107 | 82 | 60 | 74 |
| tmRNA b | 1 | 1 | 1 | 1 | 1 | 1 |
| Number of contigs as plasmid c | 10 | 20 | 1 | 1 | 0 | 3 |
| CRISPR repeat d | 0 | 7 | 5 | 3 | 5 | 2 |
| Strain | 16S rRNA (bp) | Most Similar Taxon | Identity (%) | dDDH Value | Accession Number |
|---|---|---|---|---|---|
| N6 | 1527 | Achromobacter spanius | 100% | 89.3% (A. spanius) | GCA_977062005 |
| H17 | 1438 | Leclercia adecarboxylata | 99.71% | 74.2% (Leclercia tamurae) | GCA_977061975 |
| 44.8% (L. adecarboxylata) | |||||
| S3 | 1443 | Pantoea conspicua | 99.64% | 69.8% (Pantoea pleuroti) | PRJEB102903 |
| 29.7% (P. conspicua) | |||||
| N25 | 1318 | Bacillus cereus | 100% | 72.5% (B. cereus) | GCA_977062015 |
| MHA1 | 1459 | Priestia aryabhattai | 100% | 73.1% (P. aryabhattai) | GCA_977061995 |
| MS4 | 1560 | Priestia megaterium | 99.86% | 92.0% (P. megaterium) | GCA_977061985 |
| Strain | ARG N/n | Gene | Number of Copies | Localization | Confers Resistance Towards |
|---|---|---|---|---|---|
| MHA1 | 49/10 | gyrA, gyrB | 2 copies each | Chromosome | Ciprofloxacin |
| s10p | 1 copy | Chromosome | Tetracycline | ||
| s12p | 1 copy | Chromosome | Streptomicin | ||
| gidB | 1 copy | Plasmid | Streptomycin | ||
| murA | 1 copy | Chromosome | Fosfomycin | ||
| fosA | 1 copy | Chromosome | Fosfomycin | ||
| MS4 | 49/10 | gyrA, gyrB | 2 copies each | Chromosome | Ciprofloxacin |
| s10p | 1 copy | Chromosome | Tetracycline | ||
| s12p | 1 copy | Chromosome | Streptomicin | ||
| gidB | 1 copy | Chromosome | Streptomycin | ||
| murA | 2 copies | Chromosome | Fosfomycin | ||
| fosB | 1 copy | Chromosome | Fosfomycin | ||
| N25 | 52/17 | gyrA, gyrB | 1 copy each | Chromosome | Ciprofloxacin |
| s10p | 1 copy | Chromosome | Tetracycline | ||
| s12p | 1 copy | Chromosome | Streptomicin | ||
| gidB | 1 copy | Chromosome | Streptomycin | ||
| murA | 2 copies | Chromosome | Fosfomycin | ||
| fosB | 1 copy | Chromosome | Fosfomycin | ||
| BcII family | 1 copy | Chromosome | Ampicillin | ||
| CatA15/A16 | 1 copy | Chromosome | Chloramphenicol | ||
| YkkA, YkkC, YkkD | 1 copy each | Chromosome | Tet., Strep., Chloram. | ||
| VanXY-unclassifield | 2 copies | 1(chr) + 1(plas) | Vancomycin | ||
| VanA/I/Pt-type | 1 copy | Plasmid | Vancomycin | ||
| VanF/M-type | 2 copies | 1(chr) + 1(plas) | Vancomycin | ||
| VanR- unclassified | 1 copy | Plasmid | Vancomycin |
| Strain | ARG (N/n) | Gene | Number of Copies | Localization | Confers Resistance Towards |
|---|---|---|---|---|---|
| H17 | 55/26 | BlaEC | 1 copy | Chromosome | Ampicillin |
| marA, marB | 1 copy each | Chromosome | Activator protein (regulation) | ||
| AcrA, AcrB, AcrD, AcrE, | 1 copy each | Chromosome | Amp., Cipro., Chloram., Genta., Tet. | ||
| AcrF, AcrZ | 1 copy each | Chromosome | Amp., Cipro., Chloram., Genta., Tet. | ||
| TolC | 1 copy | Chromosome | Export channel, several antibiotics | ||
| TolC/OmpH | 1 copy | Chromosome | Export channel, several antibiotics | ||
| MdtA, MdtB | 1 copy each | Chromosome | Multidrug efflux pump | ||
| MdtC | 2 copies | Chromosome | Multidrug efflux pump | ||
| MdtL | 1 copy | Chromosome | Multidrug efflux pump | ||
| H-NS | 1 copy | Chromosome | Hist.-like nucleoid-structur., Colistin Ciprofloxacin | ||
| gyrA, gyrB | 1 copy each | Chromosome | |||
| MacA, MacB | 1 copy each | Chromosome | Erythromycin | ||
| s12p | 1 copy | Chromosome | Streptomycin | ||
| gidB | 1 copy | Chromosome | Streptomycin | ||
| murA | 1 copy | Chromosome | Fosfomycin | ||
| MdfA/Cmr | 1 copy | Chromosome | Multidrug efflux pump | ||
| EmrD | 1 copy | Chromosome | Chloramphenicol | ||
| N6 | 50/17 | MexAB-OprM | 2 copies | Chromosome | Multidrug efflux pump |
| MexCD-OprJ | 3 copies | Chromosome | Multidrug efflux pump | ||
| MexHI-OpmD | 3 copies | Chromosome | Multidrug efflux pump | ||
| OprM | 1 copy | Chromosome | Export channel, several antibiotics | ||
| gyrA, gyrB | 1 copy each | Chromosome | Ciprofloxacin | ||
| MacA, MacB | 1 copy each | Chromosome | Erythromycin | ||
| s12p | 1 copy | Chromosome | Streptomycin | ||
| gidB | 1 copy | Chromosome | Streptomycin | ||
| murA | 2 copies | Chromosome | Fosfomycin | ||
| S3 | 54/26 | MarA | 1 copy | Chromosome | Activator protein (regulation) |
| AcrA, AcrB, AcrD, AcrZ | 1 copy each | Chromosome | Multidrug efflux pump | ||
| TolC | 1 copy | Chromosome | Export channel, several antibiotics | ||
| MdtA, MdtB, MdtC | 2 copies each | Chromosome | Multidrug efflux pump | ||
| H-NS | 5 copies | 3 (chr), 2 (plas) | Hist.-like nucleoid-structur., Colistin | ||
| gyrA, gyrB | 1 copy each | Chromosome | Ciprofloxacin | ||
| s12p | 1 copy | Chromosome | Streptomycin | ||
| gidB | 1 copy | Chromosome | Streptomycin | ||
| murA | 1 copy | Chromosome | Fosfomycin | ||
| MdfA/Cmr | 2 copies | Chromosome | Multidrug efflux pump | ||
| OprB | 1 copy | Chromosome | Export channel, several antibiotics | ||
| MexEF-OprN | 1 copy | Chromosome | Multidrug efflux pump |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pajuelo, E.; Medina-Rodríguez, M.; Flores-Duarte, N.J.; Doukkali, B.; Mesa-Marín, J.; Rodríguez-Llorente, I.D.; Navarro-Torre, S. Antimicrobial Resistance in Bacterial Strains of Agricultural Interest: Predictions Based on Genomic Data. Antibiotics 2026, 15, 14. https://doi.org/10.3390/antibiotics15010014
Pajuelo E, Medina-Rodríguez M, Flores-Duarte NJ, Doukkali B, Mesa-Marín J, Rodríguez-Llorente ID, Navarro-Torre S. Antimicrobial Resistance in Bacterial Strains of Agricultural Interest: Predictions Based on Genomic Data. Antibiotics. 2026; 15(1):14. https://doi.org/10.3390/antibiotics15010014
Chicago/Turabian StylePajuelo, Eloísa, Manuel Medina-Rodríguez, Noris J. Flores-Duarte, Bouchra Doukkali, Jennifer Mesa-Marín, Ignacio D. Rodríguez-Llorente, and Salvadora Navarro-Torre. 2026. "Antimicrobial Resistance in Bacterial Strains of Agricultural Interest: Predictions Based on Genomic Data" Antibiotics 15, no. 1: 14. https://doi.org/10.3390/antibiotics15010014
APA StylePajuelo, E., Medina-Rodríguez, M., Flores-Duarte, N. J., Doukkali, B., Mesa-Marín, J., Rodríguez-Llorente, I. D., & Navarro-Torre, S. (2026). Antimicrobial Resistance in Bacterial Strains of Agricultural Interest: Predictions Based on Genomic Data. Antibiotics, 15(1), 14. https://doi.org/10.3390/antibiotics15010014

