Optimising Meropenem and Piperacillin Dosing in Patients Undergoing Extracorporeal Membrane Oxygenation Without Renal Dysfunction (MEPIMEX)
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Eligibility Criteria
4.3. Data Collection and Definitions
4.4. β-Lactam Treatment and Measurements
4.5. PK and PD Parameters
- 1.
- Unbound plasma clearance (CLu) [L/h] = daily dose [mg]/24 h · fCss−1 [mg/L].
- 2.
- fAUCss [mg·h/L] = daily dose [mg]/CLu [L/h].
- 3.
- Dose-normalised Css = fCss [mg/L]/daily dose [mg].
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDR | Multidrug-resistant |
PK | Pharmacokinetics |
PD | Pharmacodynamics |
MIC | Minimum inhibitory concentration |
%fT>MIC | Percentage of time of the dosing interval during which the free steady-state serum concentration remains above MIC |
fCss | Free steady-state serum concentration |
TDM | Therapeutic drug monitoring |
ECMO | Extracorporeal membrane oxygenation |
ICU | Intensive care unit |
eGFR | Estimated glomerular filtration rate |
ARC | Augmented renal clearance |
MV | Mechanical ventilation |
BMI | Body mass index |
fAUC | Area under the curve |
CLu | Unbound plasma clearance |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
UPLC-MS/MS | Ultra-performance liquid chromatography–tandem mass spectrometry technique |
Fu | Unbound fraction |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
SD | Standard deviations |
GEE | Generalised estimating equation |
References
- Annunziato. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. Int. J. Mol. Sci. 2019, 20, 5844. [Google Scholar] [CrossRef]
- Heffernan, A.J.; Sime, F.B.; Lipman, J.; Roberts, J.A. Individualising Therapy to Minimize Bacterial Multidrug Resistance. Drugs 2018, 78, 621–641. [Google Scholar] [CrossRef]
- Drusano, G. Antimicrobial pharmacodynamics: Critical interactions of “bug and drug”. Nat. Rev. Microbiol. 2004, 2, 289–300. [Google Scholar] [CrossRef]
- Craig, W.A. Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin. Infect. Dis. 1998, 26, 1–10. [Google Scholar] [CrossRef]
- Mouton, J.W.; Punt, N.; Vinks, A.A. Concentration-effect relationship of ceftazidime explains why the time above the MIC is 40 percent for a static effect in vivo. Antimicrob. Agents Chemother. 2007, 51, 3449–3451. [Google Scholar] [CrossRef] [PubMed]
- Scharf, C.; Liebchen, U.; Paal, M.; Taubert, M.; Vogeser, M.; Irlbeck, M.; Zoller, M.; Schroeder, I. The higher the better? Defining the optimal beta-lactam target for critically ill patients to reach infection resolution and improve outcome. J. Intensive Care 2020, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.; Lipman, J.; Mouton, J.; Hope, W.; Roberts, J. Applying Pharmacokinetic/Pharmacodynamic Principles in Critically Ill Patients: Optimizing Efficacy and Reducing Resistance Development. Semin. Respir. Crit. Care Med. 2015, 36, 136–153. [Google Scholar] [CrossRef]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef]
- Tam, V.H.; Chang, K.T.; Zhou, J.; Ledesma, K.R.; Phe, K.; Gao, S.; Van Bambeke, F.; Sánchez-Díaz, A.M.; Zamorano, L.; Oliver, A.; et al. Determining β-lactam exposure threshold to suppress resistance development in Gram-negative bacteria. J. Antimicrob. Chemother. 2017, 72, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Shekar, K.; Roberts, J.A. Antimicrobial therapy during ECMO—Customised dosing with therapeutic drug monitoring: The way to go? Anaesth. Crit. Care Pain. Med. 2019, 38, 451–453. [Google Scholar] [CrossRef]
- Boidin, C.; Moshiri, P.; Dahyot-Fizelier, C.; Goutelle, S.; Lefeuvre, S. Pharmacokinetic variability of beta-lactams in critically ill patients: A narrative review. Anaesth. Crit. Care Pain. Med. 2020, 39, 87–109. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.G.; Fernandes, J.; Duarte, A.R.; Fernandes, S.M. β-Lactam Dosing in Critical Patients: A Narrative Review of Optimal Efficacy and the Prevention of Resistance and Toxicity. Antibiotics 2022, 11, 1839. [Google Scholar] [CrossRef]
- Masich, A.M.; Heavner, M.S.; Gonzales, J.P.; Claeys, K.C. Pharmacokinetic/Pharmacodynamic Considerations of Beta-Lactam Antibiotics in Adult Critically Ill Patients. Curr. Infect. Dis. Rep. 2018, 20, 9. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, P.; Moniz, P.; Pereira, J.G.; Coelho, L. Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms. 2021, 9, 1401. [Google Scholar] [CrossRef]
- Roberts, J.A.; De Waele, J.J.; Dimopoulos, G.; Koulenti, D.; Martin, C.; Montravers, P.; Rello, J.; Rhodes, A.; Starr, T.; Wallis, S.C.; et al. DALI: Defining Antibiotic Levels in Intensive care unit patients: A multi-centre point of prevalence study to determine whether contemporary antibiotic dosing for critically ill patients is therapeutic. BMC Infect. Dis. 2012, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Tilanus, A.; Drusano, G. Optimizing the Use of Beta-Lactam Antibiotics in Clinical Practice: A Test of Time. Open Forum Infect. Dis. 2023, 10, ofad305. [Google Scholar] [CrossRef]
- Dulhunty, J.M.; Brett, S.J.; De Waele, J.J.; Rajbhandari, D.; Billot, L.; Cotta, M.O.; Davis, J.S.; Finfer, S.; Hammond, N.E.; Knowles, S.; et al. Continuous vs Intermittent β-Lactam Antibiotic Infusions in Critically Ill Patients with Sepsis: The BLING III Randomized Clinical Trial. JAMA 2024, 332, 629–637. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Hammond, N.E.; Brett, S.J.; Cotta, M.O.; De Waele, J.J.; Devaux, A.; Di Tanna, G.L.; Dulhunty, J.M.; Elkady, H.; Eriksson, L.; et al. Prolonged vs Intermittent Infusions of β-Lactam Antibiotics in Adults with Sepsis or Septic Shock: A Systematic Review and Meta-Analysis. JAMA 2024, 332, 638–648. [Google Scholar] [CrossRef]
- Kühn, D.; Metz, C.; Seiler, F.; Wehrfritz, H.; Roth, S.; Alqudrah, M.; Becker, A.; Bracht, H.; Wagenpfeil, S.; Hoffmann, M.; et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: A prospective, observational single-center study. Crit. Care 2020, 24, 664. [Google Scholar] [CrossRef]
- Stašek, J.; Keller, F.; Kočí, V.; Klučka, J.; Klabusayová, E.; Wiewiorka, O.; Strašilová, Z.; Beňovská, M.; Škardová, M.; Maláska, J. Update on Therapeutic Drug Monitoring of Beta-Lactam Antibiotics in Critically Ill Patients—A Narrative Review. Antibiotics 2023, 12, 568. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients—Guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit. Care 2019, 23, 104. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Alffenaar, J.W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Fratoni, A.J.; Nicolau, D.P.; Kuti, J.L. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy 2021, 41, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Gomez, F.; Veita, J.; Laudanski, K. Antibiotics and ECMO in the Adult Population—Persistent Challenges and Practical Guides. Antibiotics 2022, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Mornese Pinna, S.; Sousa Casasnovas, I.; Olmedo, M.; Machado, M.; Fernández, M.J.; Devesa-Cordero, C.; Galar, A.; Alvarez-Uria, A.; Fernández-Avilés, F.; Carreño, J.G.; et al. Nosocomial Infections in Adult Patients Supported by Extracorporeal Membrane Oxygenation in a Cardiac Intensive Care Unit. Microorganisms 2023, 11, 1079. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Wang, H.; Hou, X. Outcome and Clinical Characteristics of Nosocomial Infection in Adult Patients Undergoing Extracorporeal Membrane Oxygenation: A Systematic Review and Meta-Analysis. Front. Public. Health 2022, 10, 857–873. [Google Scholar] [CrossRef]
- Roberts, J.A.; Bellomo, R.; Cotta, M.O.; Koch, B.C.P.; Lyster, H.; Ostermann, M.; Roger, C.; Shekar, K.; Watt, K.; Abdul-Aziz, M.H. Machines that help machines to help patients: Optimising antimicrobial dosing in patients receiving extracorporeal membrane oxygenation and renal replacement therapy using dosing software. Intensive Care Med. 2022, 48, 1338–1351. [Google Scholar] [CrossRef]
- Hahn, J.; Min, K.L.; Kang, S.; Yang, S.; Park, M.S.; Wi, J.; Chang, M.J.; Ferran, A.A. Population Pharmacokinetics and Dosing Optimization of Piperacillin-Tazobactam in Critically Ill Patients on Extracorporeal Membrane Oxygenation and the Influence of Concomitant Renal Replacement Therapy. Microbiol. Spectr. 2021, 9, e0063321. [Google Scholar] [CrossRef]
- Fillâtre, P.; Lemaitre, F.; Nesseler, N.; Schmidt, M.; Besset, S.; Launey, Y.; Maamar, A.; Daufresne, P.; Flecher, E.; Le Tulzo, Y.; et al. Impact of extracorporeal membrane oxygenation (ECMO) support on piperacillin exposure in septic patients: A case–control study. J. Antimicrob. Chemother. 2021, 76, 1242–1249. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, H.S.; Park, S.; Kim Hil Lee, S.H.; Lee, D.H. Population pharmacokinetics of piperacillin/tazobactam in critically ill Korean patients and the effects of extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2022, 77, 1353–1364. [Google Scholar] [CrossRef]
- Duceppe, M.A.; Kanji, S.; Do, A.T.; Ruo, N.; Cavayas, Y.A.; Albert, M.; Robert-Halabi, M.; Zavalkoff, S.; Dupont, P.; Samoukovic, G.; et al. Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Adults During Extracorporeal Membrane Oxygenation: A Systematic Review. Drugs 2021, 81, 1307–1329. [Google Scholar] [CrossRef]
- Shekar, K.; Abdul-Aziz, M.H.; Cheng, V.; Burrows, F.; Buscher, H.; Cho, Y.-J.; Corley, A.; Diehl, A.; Gilder, E.; Jakob, S.M.; et al. Antimicrobial Exposures in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation. Am. J. Respir. Crit. Care Med. 2023, 207, 704–720. [Google Scholar] [CrossRef] [PubMed]
- Peitz, G.J.; Murry, D.J. The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics. Antibiotics 2023, 12, 500. [Google Scholar] [CrossRef]
- Donadello, K.; Antonucci, E.; Cristallini, S.; Roberts, J.A.; Beumier, M.; Scolletta, S.; Jacobs, F.; Rondelet, B.; de Backer, D.; Vincent, J.-L.; et al. β-Lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: A case–control study. Int. J. Antimicrob. Agents 2015, 45, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Roberts, J.A. Antibiotic dosing during extracorporeal membrane oxygenation: Does the system matter? Curr. Opin. Anaesthesiol. 2020, 33, 71–82. [Google Scholar] [CrossRef]
- Gijsen, M.; Dreesen, E.; Annaert, P.; Nicolai, J.; Debaveye, Y.; Wauters, J.; Spriet, I. Meropenem Pharmacokinetics and Target Attainment in Critically Ill Patients Are Not Affected by Extracorporeal Membrane Oxygenation: A Matched Cohort Analysis. Microorganisms 2021, 9, 1310. [Google Scholar] [CrossRef]
- Hanberg, P.; Öbrink-Hansen, K.; Thorsted, A.; Bue, M.; Tøttrup, M.; Friberg, L.E.; Hardlei, T.F.; Søballe, K.; Gjedsted, J. Population Pharmacokinetics of Meropenem in Plasma and Subcutis from Patients on Extracorporeal Membrane Oxygenation Treatment. Antimicrob. Agents Chemother. 2018, 62, 1–13. [Google Scholar] [CrossRef]
- Honeycutt, C.C.; McDaniel, C.G.; McKnite, A.; Hunt, J.P.; Whelan, A.; Green, D.J.; Watt, K.M. Meropenem extraction by ex vivo extracorporeal life support circuits. J. Extra Corpor. Technol. 2023, 55, 159–166. [Google Scholar] [CrossRef]
- Shekar, K.; Fraser, J.F.; Taccone, F.S.; Welch, S.; Wallis, S.C.; Mullany, D.V.; Lipman, J.; Roberts, J. The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on meropenem pharmacokinetics: A matched cohort study. Crit. Care 2014, 18, 565. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Fraser, J.F.; Smith, M.T.; Roberts, J.A. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J. Crit. Care 2012, 27, e9–e741. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, H.S.; Park, S.; Kim Hil Lee, S.H.; Kim, Y.K. Population Pharmacokinetics of Meropenem in Critically Ill Korean Patients and Effects of Extracorporeal Membrane Oxygenation. Pharmaceutics 2021, 13, 1861. [Google Scholar] [CrossRef]
- Esteve-Pitarch, E.; Gumucio-Sanguino, V.D.; Cobo-Sacristán, S.; Shaw, E.; Maisterra-Santos, K.; Sabater-Riera, J.; Pérez-Fernandez, X.L.; Rigo-Bonnin, R.; Tubau-Quintano, F.; Carratalà, J.; et al. Continuous Infusion of Piperacillin/Tazobactam and Meropenem in ICU Patients Without Renal Dysfunction: Are Patients at Risk of Underexposure? Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 527–538. [Google Scholar] [CrossRef]
- Cheng, V.; Abdul-Aziz, M.H.; Burrows, F.; Buscher, H.; Cho, Y.-J.; Corley, A.; Diehl, A.; Gilder, E.; Jakob, S.M.; Kim, H.-S.; et al. Population Pharmacokinetics of Piperacillin and Tazobactam in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation: An ASAP ECMO Study. Antimicrob. Agents Chemother. 2021, 65, e0143821. [Google Scholar] [CrossRef]
- Morales Castro, D.; Dresser, L.; Granton, J.; Fan, E. Pharmacokinetic Alterations Associated with Critical Illness. Clin. Pharmacokinet. 2023, 62, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Bouglé, A.; Dujardin, O.; Lepère, V.; Ait Hamou, N.; Vidal, C.; Lebreton, G.; Salem, J.-E.; El-Helali, N.; Petijean, G.; Amour, J. PHARMECMO: Therapeutic drug monitoring and adequacy of current dosing regimens of antibiotics in patients on Extracorporeal Life Support. Anaesth. Crit. Care Pain. Med. 2019, 38, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Roberts, J.A.; Ghassabian, S.; Mullany, D.V.; Wallis, S.C.; Smith, M.T.; Fraser, J.F. Altered antibiotic pharmacokinetics during extracorporeal membrane oxygenation: Cause for concern? J. Antimicrob. Chemother. 2013, 68, 726–727. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Yang, S.; Hahn, J.; Jang, J.Y.; Min, K.L.; Wi, J.; Chang, M.J. Dose Optimization of Meropenem in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation in Critically Ill Cardiac Patients: Pharmacokinetic/Pharmacodynamic Modeling. J. Clin. Med. 2022, 11, 6621. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Hong, L.T.; Downes, K.J.; FakhriRavari, A.; Abdul-Mutakabbir, J.C.; Kuti, J.L.; Jorgensen, S.; Young, D.C.; Alshaer, M.H.; Bassetti, M.; Bonomo, R.A.; et al. International consensus recommendations for the use of prolonged-infusion beta-lactam antibiotics: Endorsed by the American College of Clinical Pharmacy, British Society for Antimicrobial Chemotherapy, Cystic Fibrosis Foundation, European Society of Clinical Microbiology and Infectious Diseases, Infectious Diseases Society of America, Society of Critical Care Medicine, and Society of Infectious Diseases Pharmacists: An executive summary. Pharmacotherapy 2023, 44, 736–739. [Google Scholar] [CrossRef]
- Rigo Bonnin, R.; Alía Ramos, P. Desarrollo y validación de un procedimiento de medida para la medicación simultánea de la concentración de masa de ceftazidima, meropenem y piperacilina en el plasma mediante UHPLC-MS/MS. Rev. Lab. Clin. 2017, 10, 3–13. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. EUCAST Clinical Breakpoints. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 13 September 2024).
Control Group | ECMO Group | p-Value | |
---|---|---|---|
Meropenem | |||
Number of patients | 40 (85.1) | 7 (14.9) | |
Sex (male/female) | 26 (65)/14 (35) | 7 (100)/0 (0) | 0.086 |
Age, year | 59.4 (13.5) | 60.6 (18.4) | 0.417 |
Weight, kg | 74.34 (16.9) | 85.1 (9.9) | 0.540 |
BMI, kg/m2 Underweight (≤18.5) Normal weight (18.6–24.9) Overweight (25–29.9) Obese (≥30) | 3 (7.50) 12 (30.00) 14 (35.00) 11 (27.50) | 0 (0) 0 (0) 5 (71.43) 2 (28.57) | 0.205 |
Baseline eGFR | 85.1 (21.9) | 89.5 (5.5) | 0.162 |
SOFA scale value | 6.40 (3.28) | 6.57 (1.90) | 0.447 |
Neurocritical patient | 6 (15.0) | 0 (0) | 0.571 |
Admission diagnosis Surgical Medical Trauma | 16 (40.0) 19 (47.5) 5 (12.50) | 0 (0) 7 (100) 0 (0) | 0.036 |
Days of hospitalisation | 51.9 (44.6) | 45.3 (24.4) | 0.351 |
Days in ICU | 20.5 (20.9) | 37.7 (20.9) | 0.025 |
Days of MV | 11.1 (13.5) | 39.9 (18.4) | <0.001 |
Outcome (exitus) | 10 (25.00) | 4 (57.14) | 0.173 |
Piperacillin | |||
Number of patients | 72 (86.75) | 11 (13.25) | |
Sex (male/female) | 45 (62.50)/27 (37.50) | 9 (81.82)/2 (18.18) | 0.211 |
Age, year | 60.4 (16.1) | 72.0 (12.5) | 0.012 |
Weight, kg | 75.9 (17.9) | 88.6 (24.2) | 0.020 |
BMI, kg/m2 Underweight (≤18.5) Normal weight (18.6–24.9) Overweight (25–29.9) Obese (≥30) | 3 (4.17) 25 (34.72) 26 (36.11) 18 (25.00) | 0 (0) 3 (27.27) 4 (36.36) 4 (36.36) | 0.782 |
Baseline eGFR | 91.5 (20.9) | 83.5 (12.5) | 0.112 |
SOFA scale value | 5.63 (3.16) | 6.00 (4.36) | 0.364 |
Neurocritical patient | 22 (30.6) | 0 (0) | 0.032 |
Admission diagnosis Surgical Medical Trauma | 34 (47.22) 32 (44.44) 6 (8.33) | 0 (0) 11 (100) 0 (0) | 0.003 |
Days of hospitalisation | 45.9 (41.4) | 85.7 (43.3) | 0.002 |
Days in ICU | 19.9 (17.2) | 70.6 (32.2) | <0.001 |
Days of MV | 20.9 (86.2) | 67.2 (27.4) | 0.041 |
Outcome (exitus) | 19 (26.39) | 5 (45.46) | 0.194 |
Covariate | fCss (mg/L) | fCss (mg/L)/ Daily Dose | lnCLu (L/h) | fAUC (mg·h/L) | p-Value | |
---|---|---|---|---|---|---|
Meropenem | ||||||
Sex | Male (59) Female (20) | 17.4 (17.2) 18.9 (18.1) | 5.8 (5.7) 6.3 (6.1) | 2.38 (0.94) 2.26 (0.86) | 419.2 (412.1) 453.8 (436.1) | 0.615 |
Neurocritical status | Yes (11) No (68) | 21.8 (14.5) 17.2 (17.8) | 7.3 (4.8) 5.7 (5.9) | 1.99 (0.77) 2.40 (0.93) | 522.8 (347.2) 412.6 (426.0) | 0.169 |
Post-surgical drainage | Yes (31) No (48) | 16.2 (14.9) 18.9 (18.8) | 5.4 (4.9) 6.3 (6.3) | 2.49 (1.01) 2.26 (0.85) | 387.9 (359.3) 453.8 (450.2) | 0.285 |
MV | Yes (56) No (23) | 15.2 (14.1) 24.2 (22.4) | 5.1 (4.7) 8.1 (7.5) | 2.50 (0.92) 1.97 (0.82) | 365.3 (339.7) 580.5 (538.4) | 0.019 |
Vasoactive drugs | Yes (26) No (53) | 18.9 (20.8) 17.3 (15.5) | 6.3 (6.9) 5.7 (5.2) | 2.33 (0.94) 2.36 (0.91) | 454.8 (498.6) 414.8 (373.0) | 0.908 |
Admission diagnosis | Surgical (20) Medical (51) Trauma (8) | 18.2 (17.0) 16.9 (18.1) 22.8 (12.9) | 6.1 (5.7) 5.6 (6.1) 7.6 (4.3) | 2.47 (1.18) 2.37 (0.83) 1.88 (0.68) | 432.3 (408.9) 406.0 (435.6) 546.8 (311.3) | 0.301 |
BMI | ≤18.5 (3) 18.6–24.9 (12) 25–29.9 (18) ≥30 (13) | 17.4 (7.2) 34.0 (28.1) 21.1 (17.1) 16.3 (14.8) | 5.8 (2.4) 11.3 (9.4) 6.9 (5.8) 5.4 (4.9) | 2.03 (0.44) 1.61 (0.84) 2.32 (1.27) 2.38 (0.86) | 417.9 (171.7) 816.9 (673.4) 506.9 (410.4) 391.2 (356.3) | 0.230 |
eGFR | 60–89 (16) 90–119/129 (40) ≥120/130 (23) | 33.4 (25.5) 15.7 (13.0) 10.7 (9.1) | 11.1 (8.5) 5.2 (4.4) 3.6 (3.0) | 1.64 (0.90) 2.44 (0.93) 2.68 (0.63) | 800.7 (611.2) 377.4 (313.1) 256.6 (218.5) | 0.001 |
ARC | 60–119/129 (56) ≥120/130 (23) | 20.8 (19.0) 10.7 (9.1) | 6.9 (6.4) 3.6 (3.0) | 2.21 (0.98) 2.68 (0.63) | 498.3 (456.8) 256.6 (218.5) | 0.014 |
ECMO | Yes (26) No (53) | 9.4 (5.8) 21.9 (19.5) | 3.1 (1.9) 7.3 (6.5) | 2.76 (0.61) 2.14 (0.98) | 226.6 (138.8) 526.7 (468.8) | 0.001 |
Piperacillin | ||||||
Sex | Male (102) Female (41) | 28.3 (18.7) 32.6 (23.9) | 2.3 (1.6) 2.7 (1.9) | 3.10 (0.62) 2.94 (0.64) | 680.5 (448.3) 783.5 (572.8) | 0.165 |
Neurocritical status | Yes (31) No (112) | 25.0 (14.2) 30.8 (21.6) | 2.1 (1.2) 2.5 (1.8) | 3.15 (0.59) 3.03 (0.63) | 600.9 (341.3) 740.2 (517.9) | 0.315 |
Post-surgical drainage | Yes (37) No (106) | 29.5 (19.9) 29.6 (20.5) | 2.4 (1.7) 2.4 (1.7) | 3.07 (0.67) 3.05 (0.61) | 709.1 (478.8) 710.3 (492.7) | 0.820 |
MV | Yes (96) No (47) | 24.8 (14.6) 39.4 (26.2) | 1.9 (1.2) 3.3 (2.2) | 3.21 (0.57) 2.73 (0.62) | 594.7 (349.4) 945.6 (629.9) | <0.001 |
Vasoactive drugs | Yes (39) No (104) | 28.2 (17.2) 30.1 (21.4) | 2.2 (1.4) 2.5 (1.8) | 3.12 (0.60) 3.02 (0.63) | 676.0 (413.5) 722.8 (513.7) | 0.438 |
Admission diagnosis | Surgical (48) Medical (88) Trauma (7) | 33.6 (19.9) 28.6 (20.7) 15.0 (4.5) | 2.8 (1.7) 2.3 (1.7) 1.3 (0.4) | 2.88 (0.63) 3.11 (0.61) 3.56 (0.39) | 805.7 (479.4) 658.6 (497.4) 360.7 (107.1) | 0.01 |
BMI | ≤18.5 (3) 18.6–24.9 (28) 25–29.9 (31) ≥30 (22) | 52.1 (24.1) 35.1 (25.5) 30.2 (23.8) 31.6 (16.9) | 4.3 (2.0) 2.9 (2.1) 2.5 (1.9) 2.6 (1.4) | 2.32 (0.43) 2.92 (0.75) 3.01 (0.61) 2.90 (0.54) | 1250.5 (577.5) 842.8 (612.1) 721.8 (571.4) 757.9 (406.1) | 0.372 |
eGFR | 60–89 (38) 90–119/129 (74) ≥120/130 (31) | 41.8 (24.8) 28.2 (18.2) 17.9 (7.1) | 3.5 (2.1) 2.3 (1.5) 1.4 (0.6) | 2.62 (0.53) 3.09 (0.61) 3.48 (0.39) | 1002.25 (594.5) 677.2 (438.3) 430.0 (171.6) | <0.001 |
ARC | 60–119/129 (114) ≥120/130 (29) | 32.6 (21.5) 17.9 (7.3) | 2.7 (1.8) 1.4 (0.6) | 2.95 (0.63) 3.48 (0.41) | 781.4 (515.4) 429.2 (174.8) | <0.001 |
ECMO | Yes (43) No (100) | 23.6 (14.8) 32.1 (21.8) | 1.8 (1.2) 2.7 (1.8) | 3.30 (0.49) 2.95 (0.65) | 566.8 (356.2) 771.6 (523.7) | 0.001 |
Covariate | Beta | 95% CI | p-Value | |
---|---|---|---|---|
eGFR ECMO MV | 0.070 | 0.001–0.012 | 0.014 | |
Meropenem | 0.453 | 0.015–0.891 | 0.043 | |
0.089 | −0.386–0.565 | 0.713 | ||
eGFR ECMO MV | 0.130 | 0.002–0.009 | <0.001 | |
Piperacillin | −0.187 | −0.406–0.032 | 0.095 | |
0.313 | 0.0577–0.200 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronda, M.; Fuset, M.P.; Esteve-Pitarch, E.; Llop, J.; Gumucio-Sanguino, V.D.; Shaw, E.; Mula, D.M.; Maisterra-Santos, K.; Sabater, J.; Pérez, X.L.; et al. Optimising Meropenem and Piperacillin Dosing in Patients Undergoing Extracorporeal Membrane Oxygenation Without Renal Dysfunction (MEPIMEX). Antibiotics 2025, 14, 939. https://doi.org/10.3390/antibiotics14090939
Ronda M, Fuset MP, Esteve-Pitarch E, Llop J, Gumucio-Sanguino VD, Shaw E, Mula DM, Maisterra-Santos K, Sabater J, Pérez XL, et al. Optimising Meropenem and Piperacillin Dosing in Patients Undergoing Extracorporeal Membrane Oxygenation Without Renal Dysfunction (MEPIMEX). Antibiotics. 2025; 14(9):939. https://doi.org/10.3390/antibiotics14090939
Chicago/Turabian StyleRonda, Mar, M Paz Fuset, Erika Esteve-Pitarch, Josep Llop, Victor Daniel Gumucio-Sanguino, Evelyn Shaw, Daniel Marco Mula, Kristel Maisterra-Santos, Joan Sabater, Xose L. Pérez, and et al. 2025. "Optimising Meropenem and Piperacillin Dosing in Patients Undergoing Extracorporeal Membrane Oxygenation Without Renal Dysfunction (MEPIMEX)" Antibiotics 14, no. 9: 939. https://doi.org/10.3390/antibiotics14090939
APA StyleRonda, M., Fuset, M. P., Esteve-Pitarch, E., Llop, J., Gumucio-Sanguino, V. D., Shaw, E., Mula, D. M., Maisterra-Santos, K., Sabater, J., Pérez, X. L., Cobo-Sacristan, S., Rigo, R., Tubau, F., Carratalà, J., Colom-Codina, H., & Padullés, A. (2025). Optimising Meropenem and Piperacillin Dosing in Patients Undergoing Extracorporeal Membrane Oxygenation Without Renal Dysfunction (MEPIMEX). Antibiotics, 14(9), 939. https://doi.org/10.3390/antibiotics14090939