The Impact of COVID-19 on the Epidemiology of Carbapenem Resistance
Abstract
1. Introduction
2. Antimicrobial Use During the COVID-19 Pandemic
3. Infection Prevention and Control Challenges
3.1. Resource Reallocation and Staff Shortages
3.2. Overcrowding and Invasive Procedures
3.3. PPE Shortages and Misuse
3.4. Reduced Focus on Antimicrobial Stewardship and IPC Monitoring
3.5. Documented CRO Outbreaks Linked to IPC Disruption
4. Surveillance Data and Epidemiological Trends
4.1. Global Trends and Surveillance Reports
Insights from Emerging Economies and Global Surveillance
4.2. Regional Observations
5. Mechanisms of Resistance Observed During the Pandemic
5.1. Shifts in Carbapenemase Profiles
5.2. Enzymatic and Non-Enzymatic Mechanisms of Resistance
5.3. Biofilm Formation in COVID-19 Patients
5.4. Environmental Reservoirs and Wastewater Surveillance
6. Specific Pathogens of Concern
6.1. Carbapenem-Resistant Klebsiella Pneumoniae (CRKP)
6.2. Carbapenem-Resistant Acinetobacter Baumannii (CRAB)
6.3. Carbapenem-Resistant Pseudomonas Aeruginosa (CRPA)
7. Treatment of Carbapenem-Resistant Bacteria During the COVID-19 Pandemic
7.1. Antimicrobial Therapy
7.2. Infection Control and Stewardship
7.3. Challenges and Future Directions
8. Mitigation Strategies for Carbapenem Resistance in the Post-Pandemic Era
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. Available online: https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 (accessed on 6 June 2025).
- Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States, 2019; CDC: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html (accessed on 6 June 2025).
- van Duin, D.; Doi, Y. The Global Epidemiology of Carbapenemase-Producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Hsu, J. How COVID-19 Is Accelerating the Threat of Antimicrobial Resistance. BMJ 2020, 369, m1983. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic Prescribing in Patients with COVID-19: Rapid Review and Meta-Analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Vaughn, V.M.; Gandhi, T.N.; Petty, L.A.; Patel, P.K.; Prescott, H.C.; Malani, A.N.; Ratz, D.; McLaughlin, E.; Chopra, V.; Flanders, S.A. Empiric Antibacterial Therapy and Community-Onset Bacterial Coinfection in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19): A Multi-Hospital Cohort Study. Clin. Infect. Dis. 2021, 72, e533–e541. [Google Scholar] [CrossRef]
- CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022. [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Antimicrobial Resistance Surveillance in Europe 2023—2021 Data; ECDC: Stockholm, Sweden, 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2023-2021-data (accessed on 6 June 2025).
- Kong, Y.; Liu, T.; Zhang, Y.; Wang, H.; Lin, H. Investigation of an outbreak of carbapenem resistant Acinetobacter baumannii in an intensive care unit during the COVID-19 epidemic. Antimicrob. Resist. Infect. Control 2025, 14, 30. [Google Scholar] [CrossRef]
- Monnet, D.L.; Harbarth, S. Will Coronavirus Disease (COVID-19) Have an Impact on Antimicrobial Resistance? Eurosurveillance 2020, 25, 2001886. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-Infections in People with COVID-19: A Systematic Review and Meta-Analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.R.; Daneman, N. Bacterial Co-Infection and Secondary Infection in Patients with COVID-19: A Living Rapid Review and Meta-Analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Antunes, B.B.P.; Bastos, L.S.L.; Kurtz, P.; Sant’Anna, L.M.; Del Peloso, P.F.; Espanha, C.A.; Hamacher, S.; Bozza, F.A. Persistent carbapenem resistance in mechanically ventilated ICU patients: A before-and-after analysis of the COVID-19 surge. Am. J. Infect. Control 2025, 53, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, L.; Creti, R.; Palma, C.; Pantosti, A.; Unit of Antibiotic Resistance and Special Pathogens. Bacterial coinfections in COVID-19: An underestimated adversary. Ann. Ist. Super. Sanita 2020, 56, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Farzana, R.; Harbarth, S.J.; Yu, L.-M.; Carretto, E.; Moore, C.E.; Feasey, N.A.; Gales, A.C.; Galal, U.; Ergonul, O.; Yong, D.; et al. The impact of the COVID-19 pandemic on antimicrobial usage: An international patient-level cohort study. JAC-Antimicrob. Resist. 2025, 7, dlaf037. [Google Scholar] [CrossRef]
- Ashiru-Oredope, D.; Kerr, F.; Hughes, S.; Urch, J.; Lanzman, M.; Yau, T.; Cockburn, A.; Patel, R.; Sheikh, A.; Gormley, C.; et al. Assessing the Impact of COVID-19 on Antimicrobial Stewardship Activities/Programs in the United Kingdom. Antibiotics 2021, 10, 110. [Google Scholar] [CrossRef]
- Matuluko, A.; Ness, V.; Macdonald, J.; Sneddon, J.; Seaton, R.A.; Currie, K. The Impact of the COVID-19 Pandemic on the Antimicrobial Stewardship Workforce in Scottish Acute Care Hospitals—A Qualitative Study. JAC-Antimicrob. Resist. 2024, 6, dlae199. [Google Scholar] [CrossRef]
- Macera, M.; Onorato, L.; Calò, F.; Monari, C.; Annibale, R.; Signoriello, G.; Donnarumma, G.; Montemurro, M.V.; Galdiero, M.; Coppola, N. The Impact of the SARS-CoV-2 Pandemic on a Persuasive Educational Antimicrobial Stewardship Program in a University Hospital in Southern Italy: A Pre–Post Study. Antibiotics 2021, 10, 1405. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Carbapenem-Resistant Enterobacterales—Rapid Risk Assessment, Third Update; ECDC: Stockholm, Sweden, 2025. Available online: https://www.ecdc.europa.eu/en/publications-data/carbapenem-resistant-enterobacterales-rapid-risk-assessment-third-update (accessed on 6 June 2025).
- Centers for Disease Control and Prevention (CDC). Impact of COVID-19 on Healthcare-Associated Infections; CDC: Atlanta, GA, USA, 2022. Available online: https://www.cdc.gov/healthcare-associated-infections/php/data/covid-impact.html (accessed on 6 June 2025).
- Weiner-Lastinger, L.M.; Pattabiraman, V.; Konnor, R.Y.; Patel, P.R.; Wong, E.; Xu, S.Y.; Smith, B.; Edwards, J.R.; Dudeck, M.A. The Impact of Coronavirus Disease 2019 (COVID-19) on Healthcare-Associated Infections in 2020: A Summary of Data Reported to the National Healthcare Safety Network. Infect. Control Hosp. Epidemiol. 2022, 43, 12–25. [Google Scholar] [CrossRef]
- Patel, P.R.; Weiner-Lastinger, L.M.; Dudeck, M.A.; Fike, L.V.; Kuhar, D.T.; Edwards, J.R.; Pollock, D.; Benin, A. Impact of COVID-19 Pandemic on Central-Line-Associated Bloodstream Infections during the Early Months of 2020, National Healthcare Safety Network. Infect. Control Hosp. Epidemiol. 2022, 43, 790–793. [Google Scholar] [CrossRef]
- Mangioni, D.; Fox, V.; Chatenoud, L.; Bolis, M.; Bottino, N.; Cariani, L.; Gentiloni Silverj, F.; Matinato, C.; Monti, G.; Muscatello, A.; et al. Genomic Characterization of Carbapenem-Resistant Acinetobacter baumannii (CRAB) in Mechanically Ventilated COVID-19 Patients and Impact of Infection Control Measures on Reducing CRAB Circulation during the Second Wave of the SARS-CoV-2 Pandemic in Milan, Italy. Microbiol. Spectr. 2023, 11, e0020923. [Google Scholar] [CrossRef]
- Livingston, E.; Desai, A.; Berkwits, M. Sourcing Personal Protective Equipment During the COVID-19 Pandemic. JAMA 2020, 323, 1912–1914. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Serfioti, D.; Weston, D.; Greenberg, N.; Rubin, G.J. Adherence to Protective Measures among Healthcare Workers in the UK: A Cross-Sectional Study. Emerg. Med. J. 2022, 39, 100–105. [Google Scholar] [CrossRef] [PubMed]
- WHO. Rational Use of Personal Protective Equipment for COVID-19 and Considerations During Severe Shortages; WHO: Geneva, Switzerland, 2020. Available online: https://www.who.int/publications/i/item/rational-use-of-personal-protective-equipment-for-coronavirus-disease-(covid-19)-and-considerations-during-severe-shortages (accessed on 24 July 2025).
- Lee, K.H.; Kim, J.; Lee, J.A.; Kim, C.H.; Kwon, O.M.; You, E.J.; Lee, H.M.; Kim, J.H.; Jeong, S.J.; Ku, N.S.; et al. Carbapenem-resistant Acinetobacter baumannii Outbreak in a COVID-19 Isolation Ward and Successful Outbreak Control with Infection Control Measures. Infect. Chemother. 2024, 56, 222–229. [Google Scholar] [CrossRef]
- Comelli, A.; Genovese, C.; Lombardi, A.; Bobbio, C.; Scudeller, L.; Restelli, U.; Muscatello, A.; Antinori, S.; Bonfanti, P.; Casari, S.; et al. What Is the Impact of SARS-CoV-2 Pandemic on Antimicrobial Stewardship Programs (ASPs)? The Results of a Survey among a Regional Network of Infectious Disease Centres. Antimicrob. Resist. Infect. Control 2022, 11, 108. [Google Scholar] [CrossRef]
- Wimmer, M.R.; Schulz, L.T.; Hamel, A.G.; Schwei, R.J.; Fong, K.; Burgess, D.R.; Brett, M.; Hale, C.M.; Holubar, M.; Jain, R.; et al. The Impact of Coronavirus Disease 2019 (COVID-19) on the Antimicrobial Stewardship Pharmacist Workforce: A Multicenter Survey. Antimicrob. Steward. Healthc. Epidemiol. 2022, 2, e56. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Infection Prevention and Control during Health Care When COVID-19 Is Suspected or Confirmed: Interim Guidance, 15 December 2022; WHO: Geneva, Switzerland, 2022. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-IPC-2021.1 (accessed on 6 June 2025).
- Chen, J.Z.; Hoang, H.L.; Yaskina, M.; Kabbani, D.; Doucette, K.E.; Smith, S.W.; Lau, C.; Stewart, J.; Zurek, K.; Schultz, M.; et al. Efficacy and Safety of Antimicrobial Stewardship Prospective Audit and Feedback in Patients Hospitalized with COVID-19: A Protocol for a Pragmatic Clinical Trial. PLoS ONE 2022, 17, e0265493. [Google Scholar] [CrossRef]
- Perez, S.; Innes, G.K.; Walters, M.S.; Mehr, J.; Arias, J.; Greeley, R.; Chew, D.; Spalding, M. Increase in Hospital-Acquired Carbapenem-Resistant Acinetobacter baumannii Infection and Colonization in an Acute Care Hospital During a Surge in COVID-19 Admissions—New Jersey, February–July 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1827–1831. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, B.; Weikert, B.; Fucini, G.B.; Kohlmorgen, B.; Kola, A.; Weber, A.; Thoma, N.; Behnke, M.; Schwab, F.; Gastmeier, P.; et al. Risk factors for transmission of carbapenem-resistant Acinetobacter baumannii in outbreak situations: Results of a case-control study. BMC Infect. Dis. 2024, 24, 120. [Google Scholar] [CrossRef]
- Linn, K.Z.; Sutjipto, S.; Ng, O.T.; Teo, J.; Cherng, B.P.Z.; Tan, T.Y.; Pada, S.K.; Ooi, S.T.; Smitasin, N.; Thoon, K.C.; et al. Impact of COVID-19 Pandemic on Carbapenem-Resistant Enterobacterales Incidence in the South-East Asia Region: An Observational Study. Antimicrob. Stewardsh. Healthc. Epidemiol. 2023, 3, e208. [Google Scholar] [CrossRef]
- Ceparano, M.; Baccolini, V.; Migliara, G.; Isonne, C.; Renzi, E.; Tufi, D.; De Vito, C.; De Giusti, M.; Trancassini, M.; Alessandri, F.; et al. Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors. Microorganisms 2022, 10, 722. [Google Scholar] [CrossRef] [PubMed]
- Lastinger, L.M.; Alvarez, C.R.; Kofman, A.; Konnor, R.Y.; Kuhar, D.T.; Nkwata, A.; Patel, P.R.; Pattabiraman, V.; Xu, S.Y.; Dudeck, M.A. Continued Increases in the Incidence of Healthcare-Associated Infection (HAI) during the Second Year of the Coronavirus Disease 2019 (COVID-19) Pandemic. Infect. Control Hosp. Epidemiol. 2023, 44, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Kinross, P.; Gagliotti, C.; Merk, H.; Plachouras, D.; Monnet, D.L.; Högberg, L.D.; EARS-Net Study Group. Large Increase in Bloodstream Infections with Carbapenem-Resistant Acinetobacter Species during the First 2 Years of the COVID-19 Pandemic, EU/EEA, 2020 and 2021. Eurosurveillance 2022, 27, 2200845. [Google Scholar] [CrossRef]
- Arshad, A.R.; Ijaz, F.; Siddiqui, M.S.; Khalid, S.; Fatima, A.; Aftab, R.K. COVID-19 pandemic and antimicrobial resistance in developing countries. Discoveries 2021, 9, e127. [Google Scholar] [CrossRef] [PubMed]
- Gulumbe, B.H.; Sahal, M.R.; Abdulrahim, A.; Faggo, A.A.; Yusuf, Z.M.; Sambo, K.H.; Usman, N.I.; Bagwai, M.A.; Muhammad, W.N.; Adamu, A.; et al. Antibiotic resistance and the COVID-19 pandemic: A dual crisis with complex challenges in LMICs. Health Sci. Rep. 2023, 6, e1566. [Google Scholar] [CrossRef]
- Wise, M.G.; Karlowsky, J.A.; Mohamed, N.; Hermsen, E.D.; Kamat, S.; Townsend, A.; Brink, A.; Soriano, A.; Paterson, D.L.; Moore, L.S.P.; et al. Global Trends in Carbapenem- and Difficult-to-Treat-Resistance among World Health Organization Priority Bacterial Pathogens: ATLAS Surveillance Program 2018–2022. J. Glob. Antimicrob. Resist. 2024, 37, 168–175. [Google Scholar] [CrossRef]
- World Health Organization. GLASS Report: Global Antimicrobial Resistance and Use Surveillance System 2022; WHO: Geneva, Switzerland, 2022. Available online: https://www.who.int/publications/i/item/9789240062702 (accessed on 21 August 2025).
- Li, Y.; Liu, X.; Yao, H.; Zhao, X.; Chi, L.; Jin, C.Y.; Qin, S. The Evolution of Carbapenem-Resistant Pseudomonas aeruginosa in the COVID-19 Era: A Global Perspective and Regional Insights. Int. J. Antimicrob. Agents 2025, 65, 107466. [Google Scholar] [CrossRef]
- Baum, J.H.J.; Dörre, A.; Reichert, F.; Noll, I.; Feig, M.; Eckmanns, T.; Sandfort, M.; Haller, S. Changes in Incidence and Epidemiology of Antimicrobial Resistant Pathogens before and during the COVID-19 Pandemic in Germany, 2015–2022. BMC Microbiol. 2025, 25, 51. [Google Scholar] [CrossRef]
- Fasciana, T.; Antonelli, A.; Bianco, G.; Lombardo, D.; Codda, G.; Roscetto, E.; Perez, M.; Lipari, D.; Arrigo, I.; Galia, E.; et al. Multicenter Study on the Prevalence of Colonization Due to Carbapenem-Resistant Enterobacterales Strains before and during the First Year of COVID-19, Italy 2018–2020. Front. Public Health 2023, 11, 1270924. [Google Scholar] [CrossRef]
- Tiri, B.; Sensi, E.; Marsiliani, V.; Cantarini, M.; Priante, G.; Vernelli, C.; Martella, L.A.; Costantini, M.; Mariottini, A.; Andreani, P.; et al. Antimicrobial Stewardship Program, COVID-19, and Infection Control: Spread of Carbapenem-Resistant Klebsiella Pneumoniae Colonization in ICU COVID-19 Patients. What Did Not Work? J. Clin. Med. 2020, 9, 2744. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidou, S.; Kopsidas, I.; Polemis, M.; Tryfinopoulou, K.; Zaoutis, T. Antimicrobial susceptibility testing and reporting practices of public hospital microbiology laboratories in Greece, 2022: A national observational survey and call for action. Eurosurveillance 2023, 28, 2200766. [Google Scholar] [CrossRef]
- Galani, I.; Karaiskos, I.; Karantani, I.; Papoutsaki, V.; Maraki, S.; Papaioannou, V.; Kazila, P.; Tsorlini, H.; Charalampaki, N.; Toutouza, M.; et al. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Eurosurveillance 2018, 23, 1700775. [Google Scholar] [CrossRef]
- Polemis, M.; Mandilara, G.; Pappa, O.; Argyropoulou, A.; Perivolioti, E.; Koudoumnakis, N.; Pournaras, S.; Vasilakopoulou, A.; Vourli, S.; Katsifa, H.; et al. COVID-19 and Antimicrobial Resistance: Data from the Greek Electronic System for the Surveillance of Antimicrobial Resistance—WHONET-Greece (January 2018–March 2021). Life 2021, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC); National Public Health Organization (Greece). Carbapenem- and/or Colistin-Resistant Klebsiella Pneumoniae in Greece: Molecular Follow-Up Survey 2022; Eurosurveillance 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/carbapenem-andor-colistin-resistant-klebsiella-pneumoniae-greece-molecular-follow (accessed on 24 July 2025).
- Chatterjee, N.; Nirwan, P.K.; Srivastava, S.; Rati, R.; Sharma, L.; Sharma, P.; Dwivedi, P.; Jaggi, N. Trends in Carbapenem Resistance in Pre-COVID and COVID Times in a Tertiary Care Hospital in North India. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 1. [Google Scholar] [CrossRef]
- Lathakumari, R.H.; Vajravelu, L.K.; Thulukanam, J.; Nair, D.M.; Vimala, P.B.; Panneerselvam, V. Prevalence and molecular insights into carbapenem resistance: A 2-year retrospective analysis of superbugs in South India. Front. Med. 2025, 12, 1571231. [Google Scholar] [CrossRef]
- Fochat, R.C.; de Lelis Araújo, A.C.; Pereira Júnior, O.d.S.; Santos, T.F.; do Carmo Cunha, M.C.; Diniz, C.G. Prevalence and Molecular Characterization of Carbapenem-Resistant Enterobacterales in Patients from a Public Referral Hospital in a Non-Metropolitan Region of Brazil during and Post the SARS-CoV-2 Pandemic. Braz. J. Microbiol. 2024, 55, 3873–3884. [Google Scholar] [CrossRef]
- Kiffer, C.R.V.; Rezende, T.F.T.; Costa-Nobre, D.T.; Marinonio, A.S.S.; Shiguenaga, L.H.; Kulek, D.N.O.; Arend, L.N.V.S.; de Oliveira Santos, I.C.; Sued-Karam, B.R.; Rocha-de-Souza, C.M.; et al. Seven-Year Brazilian National Perspective on Plasmid-Mediated Carbapenem Resistance in Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii Complex and the Impact of the Coronavirus Disease 2019 Pandemic on Their Occurrence. Clin. Infect. Dis. 2023, 77 (Suppl. 1), S29–S37. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, S.; Zhang, L. Mechanisms of antibiotic resistance and developments in therapeutic strategies to combat Klebsiella pneumoniae infection. Infect. Drug Resist. 2024, 17, 1107–1119. [Google Scholar] [CrossRef]
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Koumaki, V.; Voudanta, E.; Michelaki, A.; Orfanidou, M.; Vagiakou, E.; Vrioni, G.; Tsakris, A. Changing Epidemiology of Carbapenemases Among Carbapenem-Resistant Enterobacterales in a Greek Tertiary Care Hospital in Athens, 2020 to 2023. Antibiotics 2025, 14, 239. [Google Scholar] [CrossRef] [PubMed]
- Echegorry, M.; Marchetti, P.; Sanchez, C.; Olivieri, L.; Faccone, D.; Martino, F.; Sarkis Badola, T.; Ceriana, P.; Rapoport, M.; Lucero, C.; et al. National Multicenter Study on the Prevalence of Carbapenemase-Producing Enterobacteriaceae in the Post-COVID-19 Era in Argentina: The RECAPT-AR Study. Antibiotics 2024, 13, 1139. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Comini, S.; Casale, R.; Iannaccone, M.; Cavallo, R.; Costa, C. Occurrence of multi-carbapenemases producers among carbapenemase-producing Enterobacterales and in vitro activity of combinations including cefiderocol, ceftazidime-avibactam, meropenem-vaborbactam, and aztreonam in the COVID-19 era. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Bedenić, B.; Luxner, J.; Car, H.; Sardelić, S.; Bogdan, M.; Varda-Brkić, D.; Šuto, S.; Grisold, A.; Beader, N.; Zarfel, G. Emergence and Spread of Enterobacterales with Multiple Carbapenemases after COVID-19 Pandemic. Pathogens 2023, 12, 677. [Google Scholar] [CrossRef] [PubMed]
- Sellera, F.P.; Lincopan, N.; Fuentes-Castillo, D.; Stehling, E.G.; Furlan, J.P.R. Rapid evolution of pan-β-lactam resistance in Enterobacterales co-producing KPC and NDM: Insights from global genomic analysis after the COVID-19 pandemic. Lancet Microbe 2024, 5, e412–e413. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Y.; Wang, R.; Wang, Q.; Jin, L.; Wang, H. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. eBioMedicine 2020, 51, 102599. [Google Scholar] [CrossRef]
- Fernández, L.; Hancock, R.E. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clin. Microbiol. Rev. 2012, 25, 661–681. [Google Scholar] [CrossRef]
- Tsai, Y.K.; Fung, C.P.; Lin, J.C.; Chen, J.H.; Chang, F.Y.; Chen, T.L.; Siu, L.K. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 2011, 55, 1485–1493. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.M.; Poirel, L.; Nordmann, P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009, 53, 4783–4788. [Google Scholar] [CrossRef]
- Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Feng, C.; Jiang, Y.; Ye, C.; Wei, Y.; Liu, J.; Zeng, Z. Mobile Genetic Elements Encoding Antibiotic Resistance Genes and Virulence Genes in Klebsiella pneumoniae: Important Pathways for the Acquisition of Virulence and Resistance. Front. Microbiol. 2025, 16, 1529157. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, X.; Yang, R.; Shen, X.; Li, G.; Zhang, C.; Li, P.; Li, S.; Xie, J.; Yang, Y. Carbapenem-resistant Gram-negative bacteria (CR-GNB) in ICUs: Resistance genes, therapeutics, and prevention—A comprehensive review. Front. Public Health 2024, 12, 1376513. [Google Scholar] [CrossRef] [PubMed]
- AlBahrani, S.; Almogbel, F.; Alanazi, W.; Almutairi, S.H.; Alanazi, M.; Maximos, S.; Azaiez, F.; Osman, A.; Almuthen, S.; Jebakumar, A.Z.; et al. Carbapenem use correlates with percentage of patients with COVID-19 in intensive care units. Infection 2023, 51, 331–336. [Google Scholar] [CrossRef]
- Thomas, G.R.; Corso, A.; Pasterán, F.; Shal, J.; Sosa, A.; Pillonetto, M.; de Souza Peral, R.T.; Hormazábal, J.C.; Araya, P.; Saavedra, S.Y.; et al. Increased detection of carbapenemase-producing Enterobacterales bacteria in Latin America and the Caribbean during the COVID-19 pandemic. Emerg. Infect. Dis. 2022, 28, e220415. [Google Scholar] [CrossRef] [PubMed]
- Nurjadi, D.; Boutin, S.; Velavan, T.P. Are low-income and middle-income countries being neglected in genomic surveillance of the emergence and spread of multidrug-resistant Enterobacterales? Lancet Microbe 2024, 5, 100854. [Google Scholar] [CrossRef]
- Roy, S.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Basu, S. Convergence of biofilm formation and antibiotic resistance in Acinetobacter baumannii infection. Front. Med. 2022, 9, 793615. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Aung, T.T.; Lakshminarayanan, R.; Chua, S.L. Biofilm formation and virulence potential of carbapenem-resistant Pseudomonas aeruginosa. Lancet Microbe 2023, 4, e489. [Google Scholar] [CrossRef] [PubMed]
- Al-Bayati, M.; Samarasinghe, S. Biofilm and Gene Expression Characteristics of the Carbapenem-Resistant Enterobacterales, Escherichia coli IMP, and Klebsiella pneumoniae NDM-1 Associated with Common Bacterial Infections. Int. J. Environ. Res. Public Health 2022, 19, 4788. [Google Scholar] [CrossRef]
- Silva, R.T.P.D.; Rocha, I.V.; Dantas, T.F.; Silva, J.D.S.; Costa Júnior, S.D.D.; Luz, A.C.O.; Moreno, M.; Leal-Balbino, T.C.; Lima, A.V.A.; Silva, E.G.D.; et al. Emergence and Spread of Resistant and Biofilm-Forming Acinetobacter baumannii in Critically Ill COVID-19 Patients. Microb. Pathog. 2024, 197, 107078. [Google Scholar] [CrossRef]
- Maldiney, T.; Pineau, V.; Neuwirth, C.; Ouzen, L.; Eberl, I.; Jeudy, G.; Dalac, S.; Piroth, L.; Blot, M.; Sautour, M.; et al. Endotracheal tube biofilm in critically ill patients during the COVID-19 pandemic: Description of an underestimated microbiological compartment. Sci. Rep. 2022, 12, 22389. [Google Scholar] [CrossRef]
- He, D.; Fu, C.; Ning, M.; Hu, X.; Li, S.; Chen, Y. Biofilms possibly harbor occult SARS-CoV-2 may explain lung cavity, re-positive and long-term positive results. Front. Cell. Infect. Microbiol. 2022, 12, 971933. [Google Scholar] [CrossRef]
- Casale, R.; Bianco, G.; Bastos, P.; Comini, S.; Corcione, S.; Boattini, M.; Cavallo, R.; De Rosa, F.G.; Costa, C. Prevalence and Impact on Mortality of Colonization and Super-Infection by Carbapenem-Resistant Gram-Negative Organisms in COVID-19 Hospitalized Patients. Viruses 2023, 15, 1934. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Feng, Y.; Lin, J.; Kang, X.; Zhuang, H.; Wen, H.; Ran, S.; Zheng, L.; Zhang, Y.; Xiang, Q.; et al. Handwashing sinks as reservoirs of carbapenem-resistant Acinetobacter baumannii in the intensive care unit: A prospective multicenter study. Front. Public Health 2024, 12, 1468521. [Google Scholar] [CrossRef]
- Baleivanualala, S.C.; Matanitobua, S.; Samisoni, Y.; Soqo, V.; Smita, S.; Mailulu, J.; Nabose, I.; Lata, A.; Shayam, C.; Sharma, R.; et al. Environmental contamination with carbapenem-resistant Acinetobacter baumannii in healthcare settings in Fiji: A potential source of infection. Front. Cell. Infect. Microbiol. 2024, 14, 1429443. [Google Scholar] [CrossRef]
- Pustijanac, E.; Hrenović, J.; Vranić-Ladavac, M.; Močenić, M.; Karčić, N.; Lazarić Stefanović, L.; Hrstić, I.; Lončarić, J.; Šeruga Musić, M.; Drčelić, M.; et al. Dissemination of Clinical Acinetobacter baumannii Isolate to Hospital Environment during the COVID-19 Pandemic. Pathogens 2023, 12, 410. [Google Scholar] [CrossRef]
- Seok, H.; Jeon, J.H.; Jung, J.H.; Ahn, S.H.; Seo, M.; Cho, H.K.; Sung, S.A.; Kim, S.H.; Choi, H.K.; Choi, W.S.; et al. Does enhanced environmental cleaning reduce carbapenem-resistant Acinetobacter baumannii colonization in the intensive care unit? Int. J. Infect. Dis. 2021, 109, 72–76. [Google Scholar] [CrossRef]
- Zhao, L.; Lv, Z.; Lin, L.; Li, X.; Xu, J.; Huang, S.; Chen, Y.; Fu, Y.; Peng, C.; Cao, T.; et al. Impact of COVID-19 Pandemic on Profiles of Antibiotic-Resistant Genes and Bacteria in Hospital Wastewater. Environ. Pollut. 2023, 332, 122133. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Zhao, Z.; Cao, Y.; Li, B. Hospital wastewater as a reservoir for antibiotic resistance genes: A meta-analysis. Front. Public Health 2020, 8, 574968. [Google Scholar] [CrossRef]
- Bombaywala, S.; Dafale, N.A. Mapping the spread and mobility of antibiotic resistance in wastewater due to COVID-19 surge. Environ. Sci. Pollut. Res. 2023, 30, 121734–121747. [Google Scholar] [CrossRef]
- Ficik, J.; Andrezál, M.; Drahovská, H.; Böhmer, M.; Szemes, T.; Liptáková, A.; Slobodníková, L. Carbapenem-Resistant Klebsiella pneumoniae in COVID-19 Era—Challenges and Solutions. Antibiotics 2023, 12, 1285. [Google Scholar] [CrossRef]
- Loconsole, D.; Sallustio, A.; Sacco, D.; Santantonio, M.; Casulli, D.; Gatti, D.; Accogli, M.; Parisi, A.; Zagaria, R.; Colella, V.; et al. Genomic surveillance of carbapenem-resistant Klebsiella pneumoniae reveals a prolonged outbreak of extensively drug-resistant ST147 NDM-1 during the COVID-19 pandemic in the Apulia region (Southern Italy). J. Glob. Antimicrob. Resist. 2024, 36, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, B.; Zhou, Y.; Zhang, Y.; Xu, T.; Zhuang, Y.; Chen, M.; Hao, L.; Shen, Y.; Feng, J. Genomic Insights of the Co-Existence of blaOXA-23, blaOXA-91, blaNDM-1 Harboring Carbapenem-Resistant Acinetobacter baumannii Isolates from the Intensive Care Units Environment in Shanghai. J. Glob. Antimicrob. Resist. 2025, 44, 72–80. [Google Scholar] [CrossRef]
- Zingg, S.; Kuster, S.; von Rotz, M.; Portmann, A.; Egli, A.; Seth-Smith, H.M.B.; Schlaepfer, P.; Goldenberger, D.; Bassetti, S.; Marsch, S.; et al. Outbreak with OXA-23-producing Acinetobacter baumannii in a COVID-19 ICU cohort: Unraveling routes of transmission. Antimicrob. Resist. Infect. Control 2024, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2022; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2022 (accessed on 21 August 2025).
- Abubakar, U.; Al-Anazi, M.; Alanazi, Z.; Rodríguez-Baño, J. Impact of COVID-19 Pandemic on Multidrug Resistant Gram Positive and Gram-Negative Pathogens: A Systematic Review. J. Infect. Public Health 2023, 16, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.; Komarow, L.; Chen, L.; Ge, L.; Hanson, B.M.; Cober, E.; Herc, E.; Alenazi, T.; Kaye, K.S.; Garcia-Diaz, J.; et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): A prospective cohort study. Lancet Microbe 2023, 4, e159–e170. [Google Scholar] [CrossRef]
- Doughty, E.L.; Liu, H.; Moran, R.A.; Hua, X.; Ba, X.; Guo, F.; Chen, X.; Zhang, L.; Holmes, M.; van Schaik, W.; et al. Endemicity and diversification of carbapenem-resistant Acinetobacter baumannii in an intensive care unit. Lancet Reg. Health West. Pac. 2023, 37, 100780. [Google Scholar] [CrossRef]
- Heil, E.L.; Claeys, K.C.; Kline, E.G.; Rogers, T.M.; Squires, K.M.; Iovleva, A.; Doi, Y.; Banoub, M.; Noval, M.M.; Luethy, P.M.; et al. Early initiation of three-drug combinations for the treatment of carbapenem-resistant A. baumannii among COVID-19 patients. J. Antimicrob. Chemother. 2023, 78, 1034–1040. [Google Scholar] [CrossRef]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol Treatment for Carbapenem-Resistant Acinetobacter baumannii Infection in the ICU during the COVID-19 Pandemic: A Multicentre Cohort Study. JAC Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef]
- Mędrzycka-Dąbrowska, W.; Lange, S.; Zorena, K.; Dąbrowski, S.; Ozga, D.; Tomaszek, L. Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients—A Scoping Review. J. Clin. Med. 2021, 10, 2067. [Google Scholar] [CrossRef] [PubMed]
- Spernovasilis, N.; Kritsotakis, E.I.; Mathioudaki, A.; Vouidaski, A.; Spanias, C.; Petrodaskalaki, M.; Ioannou, P.; Chamilos, G.; Kofteridis, D.P. A Carbapenem-Focused Antimicrobial Stewardship Programme Implemented during the COVID-19 Pandemic in a Setting of High Endemicity for Multidrug-Resistant Gram-Negative Bacteria. J. Antimicrob. Chemother. 2023, 78, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Bussini, L.; Gaibani, P.; Bovo, F.; Fornaro, G.; Lombardo, D.; Ambretti, S.; Pensalfine, G.; Appolloni, L.; Bartoletti, M.; et al. Carbapenem-Resistant Bacteria in an Intensive Care Unit during the Coronavirus Disease 2019 (COVID-19) Pandemic: A Multicenter Before-and-After Cross-Sectional Study. Infect. Control Hosp. Epidemiol. 2022, 43, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; Leung, V.; Loe, J.; Akla, E.A.; Nieuwlaat, R.; Lotfi, T.; Brown, K.A.; Daneman, N.; Schwartz, K.L.; Schünemann, H.J. Antibiotic prescribing guideline recommendations in COVID-19: A systematic survey. eClinicalMedicine 2023, 65, 102257. [Google Scholar] [CrossRef]
- Pulcini, C.; Binda, F.; Lamkang, A.S.; Trett, A.; Charani, E.; Goff, D.A.; Harbarth, S.; Hinrichsen, S.L.; Levy-Hara, G.; Mendelson, M.; et al. Developing Core Elements and Checklist Items for Global Hospital Antimicrobial Stewardship Programmes: A Consensus Approach. Clin. Microbiol. Infect. 2019, 25, 20–25. [Google Scholar] [CrossRef]
- Pierce, J.; Stevens, M.P. The emerging role of telehealth in antimicrobial stewardship: A systematic review and perspective. Curr. Treat. Options Infect. Dis. 2021, 13, 175–191. [Google Scholar] [CrossRef]
- Kulchar, R.J.; Chen, K.; Moon, C.; Srinivas, S.; Gupta, A. Telemedicine, safe medication stewardship, and COVID-19: Digital transformation during a global pandemic. J. Interprof. Educ. Pract. 2022, 29, 100524. [Google Scholar] [CrossRef]
- Bazargani, S.; Rawlins, M.D.M.; Mclellan, D.G.J.; Ingram, P.R.; Dyer, J.R. Moving to telehealth antimicrobial stewardship during the COVID-19 pandemic: Impact on activity and adherence. Intern. Med. J. 2022, 52, 2199–2200. [Google Scholar] [CrossRef] [PubMed]
- May, S.S.; Veillette, J.J.; Webb, B.J.; Stenehjem, E.A.; Throneberry, S.K.; Gelman, S.; Pirozzi, M.; Stanfield, V.; Waters, C.D.; Grisel, N.A.; et al. Effect of tele-COVID rounds and a tele-stewardship intervention on antibiotic use in COVID-19 patients admitted to 17 small community hospitals. J. Hosp. Med. 2023, 18, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, Z.; Wang, Z.; Qian, K. Containment of a carbapenem-resistant Klebsiella pneumoniae in an intensive care unit during the COVID-19 pandemic. Front. Public Health 2025, 13, 1557068. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Ombelet, S.; Ronat, J.B.; Walsh, T.; Yansouni, C.P.; Cox, J.; Vlieghe, E.; Martiny, D.; Semret, M.; Vandenberg, O.; Jacobs, J.; et al. Clinical Bacteriology in Low-Resource Settings: Today’s Solutions. Lancet Infect. Dis. 2018, 18, e248–e258. [Google Scholar] [CrossRef]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef]
- Banerjee, R.; Teng, C.B.; Cunningham, S.A.; Ihde, S.M.; Steckelberg, J.M.; Moriarty, J.P.; Shah, N.D.; Patel, R. Randomized Trial of Rapid Multiplex Polymerase Chain Reaction–Based Blood Culture Identification and Susceptibility Testing. Clin. Infect. Dis. 2015, 61, 1071–1080. [Google Scholar] [CrossRef]
- McLeod, S.M.; Miller, A.A.; Rana, K.; Altarac, D.; Moussa, S.H.; Shapiro, A.B. Clinical outcomes for patients with monomicrobial vs. polymicrobial Acinetobacter baumannii-calcoaceticus complex infections treated with sulbactam-durlobactam or colistin: A subset analysis from a phase 3 clinical trial. Open Forum Infect. Dis. 2024, 11, ofae140. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR). Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus High-Dose, Extended-Infusion Meropenem for Gram-Negative Nosocomial Pneumonia (APEKS-NP). Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Access to Medicine Foundation. 2021 Antimicrobial Resistance Benchmark; Access to Medicine Foundation: Amsterdam, The Netherlands, 2021; Available online: https://accesstomedicinefoundation.org/publications/2021-antimicrobial-resistance-benchmark (accessed on 26 August 2025).
- GARDP. Building Access to Antibiotics: Overcoming Market and Health-System Barriers; Global Antibiotic Research & Development Partnership: Geneva, Switzerland, 2022; Available online: https://gardp.org/publications (accessed on 26 August 2025).
- Sakagianni, A.; Koufopoulou, C.; Feretzakis, G.; Kalles, D.; Verykios, V.S.; Myrianthefs, P.; Fildisis, G. Using Machine Learning to Predict Antimicrobial Resistance—A Literature Review. Antibiotics 2023, 12, 452. [Google Scholar] [CrossRef] [PubMed]
- Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Kalles, D.; Martsoukou, M.; Lada, M.; Skarmoutsou, N.; Christopoulos, C.; Valakis, K.; Velentza, A.; et al. Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece. Antibiotics 2020, 9, 50. [Google Scholar] [CrossRef]
- Feretzakis, G.; Sakagianni, A.; Loupelis, E.; Kalles, D.; Skarmoutsou, N.; Martsoukou, M.; Christopoulos, C.; Lada, M.; Petropoulou, S.; Velentza, A.; et al. Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy. Healthc. Inform. Res. 2021, 27, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Luk, A.; Wei, J.; Walker, A.S.; Zhu, T.; Eyre, D.W. Machine Learning and Clinician Predictions of Antibiotic Resistance in Enterobacterales Bloodstream Infections. J. Infect. 2025, 90, 106388. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, F.; Pinto, A.; Ricciardi, G.E.; Signorelli, C.; Gianfredi, V. Artificial Intelligence in Antimicrobial Stewardship: A Systematic Review and Meta-Analysis of Predictive Performance and Diagnostic Accuracy. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 463–513. [Google Scholar] [CrossRef] [PubMed]
- Sakagianni, A.; Koufopoulou, C.; Koufopoulos, P.; Feretzakis, G.; Kalles, D.; Paxinou, E.; Myrianthefs, P.; Verykios, V.S. The Synergy of Machine Learning and Epidemiology in Addressing Carbapenem Resistance: A Comprehensive Review. Antibiotics 2024, 13, 996. [Google Scholar] [CrossRef]
Strategy | Objective | Key Actions |
---|---|---|
Infection Prevention and Control (IPC) | Reduce transmission of resistant organisms in healthcare settings |
|
Antimicrobial Stewardship Programs (ASPs) | Optimize antibiotic prescribing and reduce unnecessary carbapenem use |
|
Laboratory and Surveillance Capacity | Detect and monitor resistance trends |
|
Novel Antibiotics | Provide effective alternatives to carbapenems |
|
Global Policy and One Health | Coordinate efforts across human, animal, and environmental health |
|
AI and Machine Learning Integration | Support diagnostics, surveillance, and stewardship |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakagianni, A.; Koufopoulou, C.; Koufopoulos, P.; Feretzakis, G.; Koumaki, V. The Impact of COVID-19 on the Epidemiology of Carbapenem Resistance. Antibiotics 2025, 14, 916. https://doi.org/10.3390/antibiotics14090916
Sakagianni A, Koufopoulou C, Koufopoulos P, Feretzakis G, Koumaki V. The Impact of COVID-19 on the Epidemiology of Carbapenem Resistance. Antibiotics. 2025; 14(9):916. https://doi.org/10.3390/antibiotics14090916
Chicago/Turabian StyleSakagianni, Aikaterini, Christina Koufopoulou, Petros Koufopoulos, Georgios Feretzakis, and Vasiliki Koumaki. 2025. "The Impact of COVID-19 on the Epidemiology of Carbapenem Resistance" Antibiotics 14, no. 9: 916. https://doi.org/10.3390/antibiotics14090916
APA StyleSakagianni, A., Koufopoulou, C., Koufopoulos, P., Feretzakis, G., & Koumaki, V. (2025). The Impact of COVID-19 on the Epidemiology of Carbapenem Resistance. Antibiotics, 14(9), 916. https://doi.org/10.3390/antibiotics14090916